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Abstract
We show that some finite W-superalgebras based on gl(M|N) are truncations
of the super-Yangian Y (gl(M|N)). In the same way, we prove that finite
W-superalgebras based on osp(M|2n) are truncations of the twisted super-
Yangians Y (gl(M|2n))+. Using this homomorphism, we present these
W-superalgebras in an R-matrix formalism, and we classify their finite-
dimensional irreducible representations.

PACS numbers: 02.20.−a, 11.25.Hf, 11.30.−j

1. Introduction

W-algebras have been introduced in the 2d-conformal models as a tool for the study of these
theories. Then, these algebras and their finite-dimensional versions appeared to be relevant in
several physical backgrounds. For more details on W-algebras, see e.g. [1]. However, a full
understanding of their algebraic structure (and of their geometrical interpretation) is lacking.
The connection of some of these finite W-algebras with Yangians appeared to be a solution
at least for the algebraic structure. It could be surprising that Yangians [2], which play an
important role in integrable systems, see e.g. [3], enter into the study of algebras originating
from 2d-conformal models. Let us however note that such a connection has already been
remarked in WZW models [4]. For more information on the algebraic structure of Yangians,
see e.g. [5] and references therein.

The existence of an algebra homomorphism between a Yangian based on sl(N) and finite
W(sl(Np),N.sl(p)) algebras was first proved in [6]. Such a connection plays a role in the
study of physical models: for instance, in the case of the N-vectorial non-linear Schrödinger
equation on the real line, the full symmetry is the Yangian Y (gl(N)) ≡ Y (N), but the space
of states with particle number less than p is a representation of the W(gl(Np), p.sl(N))

algebra [7].
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Later, the connection between Yangians and finite W(gl(Np),N.sl(p)) algebras was
proved in the FRT presentation [9] of the Yangian. It appears that in this framework the above
W-algebras are nothing but truncations of the Yangian Y (N), p indicating the level where the
truncation occurs. Thanks to this presentation, an (evaluated) R-matrix for these W-algebras
was given, and their finite-dimensional irreducible representations were classified [8].

Then, this connection was extended to a class of W-algebras, namely the algebras of type
W[so(2mp),m.sl(p)],W[so((2m + 1)p),m.sl(p) + so(p)] and W[sp(2np), n.sl(p)], which
were related to truncations of twisted Yangian Y±(N)[10]. Note that although Yangians based
on orthogonal and symplectic algebras exist [2], and admit an FRT presentation [11], it is the
twisted Yangians introduced by Olshanski [12, 13] which enter into the game. The latter are
not Hopf algebras but only Hopf co-ideals in Y (N). Nevertheless, this relation allows us to
give an R-matrix presentation of the W-algebras under consideration, with however the slight
change that it is an ‘RSRS’ relation which occurs,

R12(u − v)S1(u)R′
12(u + v)S2(v) = S2(v)R′

12(u + v)S1(u)R12(u − v)

differing from the usual FRT (also called ‘RTT’) presentation

R(u − v)T1(u)T2(v) = T2(v)T1(u)R(u − v).

The classification of finite-dimensional irreducible representations of the W-algebras then
follows [10].

The aim of the present paper is to extend the above correspondence to the case of finite
W-superalgebras, based on Lie superalgebras gl(M|N) and osp(M|2n). As for gl(N) on
the one hand, and so(m) and sp(2n) on the other hand, the treatment for gl(M|N) and for
osp(M|2n) will be very different. Due to this difference, this paper is divided into two
main parts. In the first part, we show that W(gl(Mp|Np), (M + N)gl(p)) superalgebras
are truncations of the super-Yangian based on gl(M|N), leading to an ‘RTT’ presentation of
these W-superalgebras. We use this property to classify the finite-dimensional irreducible
representations of these W-superalgebras. In the second part, we deal with W-superalgebras
based on osp(M|N) and twisted super-Yangians. We show that these W-superalgebras are
truncations of twisted super-Yangians, leading to an ‘RSRS’ presentation of the former and a
classification of their finite-dimensional irreducible representations.

2. Super-Yangian

The super-Yangian Y (gl(M|N)) = Y (M|N) was first defined by Nazarov [14]. It can be
obtained as the generalization of the construction for the Yangian Y (M), based on the Lie
algebra gl(M), to the case of the Lie superalgebra gl(M|N). Its representations have been
studied by Zhang [15].

2.1. Introduction to Y (M|N)

The Lie superalgebra gl(M|N) is a Z2-graded vector space over C spanned by the basis
{Eab|a, b = 1, 2, . . . ,M + N} . We introduce the gradation index [ ]:

[a] =
{

0 if a � M

1 if M < a � M + N
and [Eab] = [a] + [b]. (2.1)

The bilinear graded commutator associated with gl(M|N) is defined as follows:

[, } :

{
gl(M|N) ⊗ gl(M|N) → gl(M|N)

[Eab, Ecd} = δcbEad − (−1)([a]+[b])([c]+[d])δadEcb.
(2.2)
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The super-Yangian Y (M|N) is a Z2-graded Hopf algebra generated by an infinite set of
elements T ab

(n), a, b = 1, 2, . . . ,M +N and n ∈ Z>0. The T ab
(n) are even if [a] + [b] ≡ 0 (mod 2)

and odd otherwise.
We introduce the generating function

T (u) =
M+N∑
a,b=1

T ab(u)Eab and T ab(u) =
∞∑

n=0

T ab
(n)u

−n (2.3)

with T ab
(0) = δab, u a spectral parameter and Eab the matrix with 1 at position (a, b) and 0

elsewhere.
The following R-matrix

R(u) = 11 ⊗ 11 − P

u
u ∈ C

satisfies the graded Yang–Baxter equation. The permutation operator P is defined by

P12 =
∑
i,j

(−1)[j ]Eij ⊗ Eji (2.4)

and the tensor product is chosen graded,

(Eij ⊗ Ekl) · (Emn ⊗ Epq) = (−1)([k]+[l])([m]+[n])EijEmn ⊗ EklEpq. (2.5)

The defining relations in Y (M|N) can be written as follows,

R(u − v)T1(u)T2(v) = T2(v)T1(u)R(u − v) (2.6)

with

T1(u) =
M+N∑
a,b=1

T ab(u)Eab ⊗ 11 and T2(v) =
M+N∑
a,b=1

T ab(v)11 ⊗ Eab. (2.7)

We can rewrite equation (2.6) as follows,

[T ab(u), T cd(v)} = (−1)[c]([a]+[b])+[a][b]

u − v
(T cb(u)T ad(v) − T cb(v)T ad(u)) (2.8)

or equivalently[
T ab

(m), T
cd
(n)

} = δcbT ad
(m+n−1) − (−1)([a]+[b])([c]+[d])δadT cb

(m+n−1)

+ (−1)[c]([a]+[b])+[a][b]
min −1∑
r=1

{
T cb

(r)T
ad
(m+n−1−r) − T cb

(m+n−1−r)T
ad
(r)

}
(2.9)

where min stands for min(m, n).
The Hopf structure is given by

ε(T ab(u)) = δab S(T ab(u)) = (T −1(u))ab (2.10)

�(T ab(u)) =
M+N∑
e=1

T ae(u) ⊗ T eb(u). (2.11)

The super-Yangian Y (M|N) is a deformation of the enveloping algebra of a polynomial
algebra (restricted to its positive modes) based on gl(M|N), denoted by U(gl(M|N)[x]).
The parameter h̄ can be recovered after rescaling the generators by an appropriate power of
h̄ : T ab

(n) → h̄n−1T ab
(n).
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2.2. Finite-dimensional irreducible representations of Y (M|N)

The finite-dimensional irreducible representations of Y (M|N) have been studied in [15]. We
recall here the main results, using a different basis for the positive roots (see [17] for details).

We introduce the subsets NM+N = [1,M + N] ∩ Z+, N
2
M+N = NM+N × NM+N and the

integer � = [
N
2

]
. The definition of the positive roots will be associated with the set

�+ = {
(a, b) ∈ N

2
M+N with either

∣∣∣∣∣∣∣∣
1 � a < b � M

M + 1 � a < b � M + N

1 � a � M and M + � + 1 � b � M + N

M + 1 � a � M + � and 1 � b � M

 . (2.12)

Definition 2.1. Let V be an irreducible Y (M|N)-module. A nonzero element v�
+ ∈ V is called

a highest weight vector if

T ab
(n)v

�
+ = 0 ∀(a, b) ∈ �+ n > 0

(2.13)
T aa

(n)v
�
+ = λ(n)

a v�
+ a = 1, . . . ,M + N n > 0 λ(n)

a ∈ C.

An irreducible module is called a highest weight module if it admits a highest weight
vector. We define

�(u) ≡ (λ1(u), λ2(u), . . . , λM+N(u)) (2.14)

with λa(u) = 1 +
∑

n>0 λn
au

−n and call �(u) a highest weight of V .

Theorem 2.2. Every finite-dimensional irreducible Y (M|N)-module V contains a unique (up
to scalar multiples) highest weight vector v�

+ .
Corresponding to each �(u) of the form (2.14), there exists a unique irreducible highest

weight Y (M|N)-module V (�) with highest weight �(u).

Theorem 2.3. The irreducible highest weight Y (M|N)-module V (�) is finite dimensional if
and only if its highest weight �(u) satisfies the following conditions,

λa(u)

λa+1(u)
= Pa(u + 1)

Pa(u)
1 � a < N + M a 	= M

λM(u)

λM+1(u)
= P̃ M(u)

PM(u)

(2.15)

where, ma being the degree of Pa ,

Pa(u) =
ma∏
i=1

(
u − γ (i)

a

)
1 � a < N + M and a 	= M γ (i)

a ∈ C

(2.16)

P̃M(u) =
mM∏
i=1

(
1 − r̃ (i)

u

)
and PM(u) =

mM∏
i=1

(
1 − r(i)

u

)
r(i), r̃ (i) ∈ C.

Among the finite-dimensional highest weight representations, there is a class of particular
interest:

Definition 2.4 (Evaluation representations). An evaluation representation evπµ
is a morphism

from the super-Yangian Y (M|N) to a highest weight irreducible representation πµ of gl(M|N).
The morphism is given by

evπµ
(T ab(u)) = δab + πµ(Eab)u−1 ∀a, b ∈ {1, . . . ,M + N} (2.17)
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that is

evπµ

(
T ab

(0)

) = δab evπµ

(
T ab

(1)

) = πµ(Eab) evπµ

(
T ab

(r)

) = 0 for r > 1 (2.18)

where Eab are the standard gl(M|N) generators.
The highest weight µ(u) = (µ1(u), . . . , µM+N(u)) of the representation evπµ

is given by

µa(u) = 1 + µau
−1 ∀a ∈ {1, . . . ,M + N} (2.19)

where µ = (µ1, . . . , µM+N) is the highest weight of πµ.

Any finite-dimensional irreducible representation can be obtained through the tensor
products2 of such evaluation representations [15]:

Definition 2.5 (Tensor product of evaluation representations). Let
{
evπi

}
i=1,...,s

be a
set of evaluation representations. The tensor product of these s representations ev 
π =
evπ1 ⊗· · ·⊗evπs

is a morphism from Y (M|N) to the tensor product of gl(M|N) representations

π = ⊗iπi given by

ev 
π
(
T ab

(r)

) = ⊕
r1+r2+···+rn=r

(
evπ1

(
T

ai1
(r1)

)
⊗ evπ2

(
T

i1i2
(r2)

)
⊗ · · · ⊗ evπs

(
T

is−1b

(rs)

))
(2.20)

where there is an implicit summation on the indices i1, i2, . . . , is−1 = 1, . . . ,M + N .
It satisfies

ev 
π
(
T ab

(r)

) 	= 0 if and only if r � s. (2.21)

2.3. Truncated super-Yangians

We will proceed as in [8]: we introduce Tp ≡ U
({

T
ij

(n), n > p
})

and the left ideal
Ip ≡ Y (M|N) · Tp generated by Tp. We then define the coset (truncation of the super-
Yangian at order p),

Yp(M|N) ≡ Y (M|N)/Ip. (2.22)

Property 2.6. The truncated super-Yangian Yp(M|N) is a superalgebra (∀p ∈ Z>0).

Proof. As in [8] the Lie superalgebra structure of Yp(M|N) can be proved by showing that
Ip is a two-sided ideal. We first show that

[Y (M|N), Tp] ⊂ Y (M|N) · Tp = Ip. (2.23)

Relation (2.9) shows that
[
T

ij
m , T kl

n

]
(for n > p) is the sum of two terms, the first being in

Y (M|N) · Tp, the second belonging to Tp · Y (M|N). Focusing on the latter, one rewrites it as

µ−1∑
r=0

(
T il

r T
kj

m+n−1−r + (−1)[i]([k]+[j ])+[k][j ]
r−1∑
s=0

(
T ij

s T kl
m+n−2−s − T

ij

m+n−2−sT
kl
s

))

=
µ−1∑
r=0

T il
r T

kj

m+n−1−r + (−1)[i]([k]+[j ])+[k][j ]

×
µ−2∑
s=0

(µ − s − 1)
(
T ij

s T kl
m+n−2−s − T

ij

m+n−2−sT
kl
s

)
(2.24)

2 Note however that one sometimes has to make a quotient to get an irreducible representation from these tensor
products.
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where µ stands for min(m, n). In (2.24), the first sum belongs to Ip, while the last sum
belongs to Tp · Y (M|N), with a summation which has one term less than the previous one;
we can thus proceed recursively in a finite number of steps. The final result is an element of
Y (M|N) · Tp . In the same way, one can show that

[Y (M|N), Tp] ⊂ Tp · Y (M|N) (2.25)

so that Ip = Y (M|N) · Tp = Tp · Y (M|N). �

Note that � is not a morphism of this superalgebra (for the structure induced by Y (M|N)),
i.e. Yp(M|N) has no natural Hopf structure.

Finally, we remark that each Yp(M|N) is a deformation of a truncated polynomial algebra
based on gl(M|N). By truncated polynomial algebra we mean the quotient of a usual gl(M|N)

polynomial algebra (of generators T
ij

(n)) by the relations T
ij

(n) = 0 for n > p. The construction
is the same as for the full super-Yangian.

2.4. Poisson super-Yangians

In the following we will deal with classical super-Yangians, where the commutator is replaced
by a Z2-graded Poisson bracket (PB). It corresponds to the usual classical limit of quantum
groups. One sets

L(u) =
M+N∑
a,b=1

(−1)[b]T ab(u) ⊗ Eba

R12(u) = 11 ⊗ 11 + h̄r12(u) + o(h̄) with r12(u) = P12

u
[ , } = h̄{ , } + o(h̄).

Relation (2.6) is then expanded as a series in h̄. Since in a classical super-Yangian we have
T ab

(n)T
cd
(m) = (−1)([a]+[b])([c]+[d])T cd

(m)T
ab
(n) , we obtain

{T ab(u), T cd(v)} = 1

u − v
(−1)[c]([a]+[b])+[a][b](T cb(u)T ad(v) − T cb(v)T ad(u)) (2.26)

which leads to{
T ab

(m), T
cd
(n)

} = δcbT
ad
(m+n−1) − (−1)([a]+[b])([c]+[d])δadT

cb
(m+n−1)

+ (−1)[c]([a]+[b])+[a][b]
min(m,n)−1∑

r=1

(
T cb

(r)T
ad
(m+n−1−r) − T cb

(m+n−1−r)T
ad
(r)

)
. (2.27)

In classical super-Yangians, all the algebraic properties described above still apply.

3. W(gl(Mp|Np), (M + N )gl(p)) superalgebras

For simplicity we note Wp(M|N) ≡ W(gl(Mp|Np), (M + N)gl(p)).

3.1. Definition of W(G,H) superalgebras and Dirac brackets

W(G,H) (super)algebras can be constructed as Hamiltonian reduction on a Lie (super)algebra
G, with Poisson brackets {. , .}. The construction is done as follows.

We start with an sl(2) embedding in G, this embedding being defined as the principal
embedding in a regular sub(super)algebraH ⊂ G. We recall that the principal sl(2) embedding
of an algebra H is given by e+ = ∑

i ei , where e+ is the positive root generator of sl(2), and
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ei are the simple root generators of H. If H is a superalgebra, the principal sl(2) embedding
is defined as the principal embedding of its bosonic part.

Once the sl(2) embedding in G is fixed (i.e. when H ⊂ G is given), let (e±, h) be its
generators, one decomposes G into sl(2) representations. This amounts to taking a G-basis of
the form J i

jm,−j � m � j , and i labelling the multiplicities, with[
e±, J i

jm

] = αjmJ i
j,m±1

[
h, J i

jm

] = mJ i
jm with αj,m ∈ C. (3.1)

We take e± = J 0
1,±1 and h = J 0

1,0. Then, one introduces a set of second-class constraints (in
Dirac terminology):

J i
jm = δi,0δj,1δm,−1 for m < j,∀j,∀i. (3.2)

This amounts to setting to zero all the generators but the sl(2) highest weight ones (which are
left free), and e− which is set to 1.

The W(G,H) (super)algebra is defined as the enveloping algebra generated by the sl(2)

highest weight generators, equipped with the Dirac brackets associated with constraints (3.2).
We recall that the Dirac brackets can be calculated as follows. If � = {φα}α∈I denotes

the set of all the above constraints, we have

�αβ = {φα, φβ} is invertible:
∑
γ∈I

�αγ �̄γβ = δβ
α where �̄αβ ≡ (�−1)αβ . (3.3)

The Dirac brackets are constructed as

{X,Y }∗ ∼ {X,Y } −
∑

α,β∈I

{X,φα}�̄αβ{φβ, Y } ∀X,Y (3.4)

where the symbol ∼ means that one has to apply the constraints on the right-hand side once
the PB have been computed.

Dirac brackets are designed in such a way that

{A,ϕα}∗ = 0 ∀α ∈ I ∀A (3.5)

Note that, owing to its construction, the Dirac bracket fulfils the conditions required for PB as
soon as the original PB does. In other words, it is graded antisymmetric, and obeys the graded
Leibniz rule and the graded Jacobi identity, where the Z2-grade [.] is that introduced in (2.1):

{A,B}∗ = −(−1)[A][B]{B,A}∗ (3.6)

{A,BC}∗ = {A,B}∗C + (−1)[A][B]B{A,C}∗ (3.7)

{A, {B,C}∗}∗ = {{A,B}∗, C}∗ + (−1)[A][B]{B, {A,C}∗}∗. (3.8)

These identities can be shown by a simple (although a bit lengthy) calculation.

3.2. Soldering procedure

The soldering procedure is an alternative way to compute the PB of W(G,H) algebras.
We apply it to the superalgebra gl(Mp|Np) with generators Ejm

ab , 0 � j � p − 1,−j �
m � j, a, b = 1, . . . ,M + N (see appendix A). Let M

jm

ab be the (M + N) square matrices
representing the generators Ejm

ab in the fundamental representation of gl(Mp|Np). Denoting
by J ab

jm the dual basis, we introduce the matrix

J ≡
M+N∑
a,b=1

p−1∑
j=0

j∑
m=−j

J ab
jmM

jm

ab . (3.9)



1064 C Briot and E Ragoucy

Let us consider an infinitesimal transformation of parameters λab
jm. For convenience, we

define the matrix λ ≡ λab
jmM

jm

ab ,

δλJ ≡ (
δλJ

ab
jm

)
M

jm

ab = [λ, J] = {str(λJ), J} (3.10)

= λef
rs str

(
Mrs

ef Mtu
cd

) {
J cd

tu , J ab
jm

}
M

jm

ab (3.11)

where summation over repeated indices is assumed, [. , .] denotes the commutator of Z2-graded
matrices, and {. , .} the PB.

We ask J to be of the form

J|g.f. = ε− +
M+N∑
a,b=1

p−1∑
j=0

Wab
j M

jj

ab (3.12)

where ε− is the sl(2) negative root generator (see appendix A1). This amounts to constraining
the generators J ab

jm to obey the following second-class constraints:

J ab
jm = δj,1δm+1,0δ

ab for −j � m < j ∀j ∀a, b. (3.13)

We look for transformations leaving J|g.f. with the same form:

δλ(J|g.f.) = [λ, J|g.f.] = (
δλW

ab
j

)
M

jj

ab. (3.14)

The parameters λ
jm

ab are constrained and only (M +N)2p of them are free. Equation (3.14)
leads to

λab
j,m+1 =

p−1∑
k,r=0

k∑
l=−k

M+N∑
e=1

(
λae

kl W
eb
r 〈k, l; r, r|jm〉 − Wae

r λeb
kl 〈r, r; k, l|jm〉)

for −j � m � j − 1 (3.15)

δλW
ab
j =

p−1∑
k,r=0

k∑
l=−k

M+N∑
e=1

(
λae

kl W
eb
r 〈k, l; r, r|jj 〉 − Wae

r λeb
kl 〈r, r; k, l|jj 〉) (3.16)

where 〈·|·〉 are real numbers defined in appendix A1. All the coefficients λkl can be expressed
in terms of the parameters λk,−k and the generators W , after a straightforward but tedious use
of equations (3.15).

On the other hand, we have

δλW
ab
j = λef

rs str
(
Mrs

ef Mkk
cd

) {
Wcd

k ,Wab
j

}
. (3.17)

With appendix A of [8] we obtain

str
(
Mrs

ef Mkk
cd

) = δrkδs,−kδf cδed(−1)[d](−1)k(2k)!(k!)2

(
p + k

2k + 1

)
. (3.18)

We define

λ̃ab
k ≡ (−1)k(2k)!(k!)2

(
p + k

2k + 1

)
λab

k,−k. (3.19)

Equation (3.17) becomes

δλW
ab
j =

p−1∑
k=0

M+N∑
c,d=1

(−1)[d]λ̃dc
k

{
Wcd

k ,Wab
j

}
. (3.20)
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If we now compare (3.16) and (3.20), the λ̃ab
k being independent of one another, we get{

Wcd
k ,Wab

j

}
as a polynomial in the Ws.

3.3. Calculation of Poisson brackets

We now give two examples of PB calculations which will be needed in the following.

3.3.1. Calculation of
{
Wab

0 ,Wcd
j

}
. For j = 0 equation (3.16) becomes

δλW
ab
0 =

p−1∑
k=0

(
λae

k,−kW
eb
k 〈k,−k; k, k|0, 0〉 − Wae

k λeb
k,−k 〈k, k; k,−k|0, 0〉)

= 1

p

p−1∑
k=0

(
λ̃ae

k Web
k − (−1)([a]+[e])([e]+[b])λ̃eb

k Wae
k

)
. (3.21)

We rewrite equation (3.20) as

δλW
ab
0 =

p−1∑
k=0

M+N∑
c,d=1

(−1)[d]λ̃dc
k

{
Wcd

k ,Wab
0

}
=

p−1∑
k=0

M+N∑
c,d=1

(−1)[d](−1)1+([a]+[b])([c]+[d])λ̃dc
k

{
Wab

0 ,Wcd
k

}
. (3.22)

Comparing the λ̃dc
k -components of both equations, we obtain

(−1)([a]+[b])([c]+[d])+[d]
{
Wab

0 ,Wcd
k

} = 1

p

(
δbc(−1)([a]+[d])([d]+[c])Wad

k − δadWcb
k

)
. (3.23)

If we define Ŵ ab
k ≡ (−1)[a]Wab

k ,∀k, equation (3.23) becomes{
Ŵ ab

0 , Ŵ cd
k

} = 1

p

(
δcbŴ ad

k − δad(−1)([a]+[b])([c]+[d])Ŵ cb
k

)
. (3.24)

3.3.2. Calculation of
{
Wab

1 ,Wcd
j

}
. Using the same procedure with j = 1 we get

δλW
ab
1 = (−1)1+[d]+([a]+[b])([c]+[d]) {

Wab
1 ,Wcd

r

}
(3.25)

δλW
ab
1 = 3

p(p2 − 1)

p−1∑
k=1

k(p2 − k2)

2k + 1
[λ̃k−1,Wk]ab

− +
3

p(p2 − 1)

p−1∑
k=1

p−1∑
n�k

[[λ̃n,Wn−k]−,Wk]ab
+

+
3

p(p2 − 1)

p−1∑
k=0

1

2k + 1

p∑
n�k+1

[[λ̃n−1,Wn−1−k]+,Wk]ab
−

− 3

p(p2 − 1)

p−1∑
n�m>k�0

1

m(2k + 1)
[[[λ̃n,Wn−m]−,Wm−1−k]−,Wk]ab

−

where

[λ̃x,Wy ]ab
± ≡

M+N∑
e=1

(
λ̃ae

x Web
y ± Wae

y λ̃eb
x

)
.
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We use Ŵ ab
k ≡ (−1)[a]Wab

k and identify the λ̃dc
k -components on both sides of the equation,

p(p2 − 1)

3

{
Ŵ ab

1 , Ŵ cd
r

} = (r + 1)(p2 − (r + 1)2)

2(r + 1) + 1

(
δbcŴ ad

r+1 − (−1)([a]+[b])([c]+[d])δadŴ cb
r+1

)
+

r∑
k=1

{
δbc(−1)[e]Ŵ ae

k Ŵ ed
r−k − (−1)([a]+[b])([c]+[d])δad(−1)[e]Ŵ ce

r−kŴ
eb
k

+
( − 1)[b]([c]+[d])+[c][d] (

Ŵ ad
r−kŴ

cb
k − Ŵad

k Ŵ cb
r−k

)}
+

r−1∑
k=0

r − k

2k + 1

{
δbc(−1)[e]Ŵ ae

k Ŵ ed
r−k − (−1)([a]+[b])([c]+[d])δad(−1)[e]Ŵ ce

r−kŴ
eb
k

+ (−1)[b]([c]+[d])+[c][d]
(
Ŵad

k Ŵ cb
r−k − Ŵ ad

r−kŴ
cb
k

)}
−

p−1∑
r�m>k�0

1

m(2k + 1)

{
δcb(−1)[e]+[f ]Ŵae

k Ŵ
ef

m−k−1Ŵ
f d
r−m

− (−1)([a]+[b])([c]+[d])δad(−1)[e]+[f ]Ŵ ce
r−mŴ

ef

m−k−1Ŵ
f b

k + (−1)[b]([c]+[d])+[c][d]

×(
Ŵ ad

r−m(−)[e](Ŵ ce
m−k−1Ŵ

eb
k

) − (−1)[e](Ŵ ae
k Ŵ ed

m−k−1

)
Ŵ cb

r−m

+ Ŵad
m−k−1(−)[e](Ŵ ce

r−mŴ eb
k

) − (−1)[e](Ŵ ae
k Ŵ ed

r−m

)
Ŵ cb

m−k−1

+ Ŵ ad
k (−)[e]

(
Ŵ ce

r−mŴ eb
m−k−1

) − (−1)[e]
(
Ŵ ae

m−k−1Ŵ
ed
r−m

)
Ŵ cb

k

)}
(3.26)

where summation over e, f, g = 1, . . . ,M + N is assumed. We recall that

Ŵ ab
j = (−1)[a]Wab

j . (3.27)

The Ŵ -basis is the one we will work on, we shall therefore omit theˆon W from now on.

3.4. W(sl(Mp|Np), (M + N)sl(p)) superalgebras

The sl(2) principal embedding in (M + N)gl(p) is indeed an embedding in (M + N)sl(p),
i.e. it commutes with the (M + N)gl(1) generators defined by gl(p) = sl(p) ⊕ gl(1).
Moreover, considering these (M + N)gl(1) subalgebras in gl(Mp|Np) which commutes
with (M + N)sl(p), it is easy to see that none of its generators is affected by constraints
(3.13), since they are highest weights. Furthermore, these gl(1) generators, while they do not
commute with all the constraints, weakly commute with them. By weakly, we mean after
using the constraints (once the PB have been computed). Thus, their Dirac brackets coincide
with their original PB. This implies that these gl(1) generators still form gl(1) subalgebras in
the W-superalgebra.

In addition, the diagonal gl(1) of these (M + N)gl(1) subalgebras, which corresponds
to the decomposition gl(Mp|Np) = sl(Mp|Np) ⊕ gl(1), is central for the original PB.
Therefore, this gl(1) generator is still central for the Dirac brackets. In other words,
one gets

Wp(M|N) = W(gl(Mp|Np), (M + N)gl(p))

= W(gl(Mp|Np), (M + N)sl(p))

= W[sl(Mp|Np) ⊕ gl(1), (M + N)sl(p)]

= U(W[sl(Mp|Np), (M + N)sl(p)] ⊕ gl(1)).
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4. Truncated super-Yangians and W-superalgebras

4.1. Wp(M|N) as a deformation of a truncated polynomial algebra

Property 4.1. The Wp(M|N) superalgebra is a deformation of the truncated polynomial
superalgebra gl(M|N)p.

Proof. To see that the Wp(M|N) is a deformation of a truncated polynomial algebra based on
gl(M|N), we modify the constraints to

J = 1

h̄
ε− +

N∑
a,b=1

p−1∑
j=0

∑
0�m�j

J ab
jmM

jm

ab . (4.1)

These constraints are equivalent to the previous ones as soon as h̄ 	= 0 (they correspond to
a rescaling J ab

jm → h̄−mJ ab
jm). With these new constraints, the equations associated with the

soldering procedure read

λab
j,m+1 = h̄

p−1∑
k,r=0

k∑
l=−k

M+N∑
e=1

(
λae

kl W
eb
r 〈k, l; r, r|jm〉 − Wae

r λeb
kl 〈r, r; k, l|jm〉)

for −j � m � j − 1 (4.2)

δλW
ab
j =

p−1∑
k,r=0

k∑
l=−k

M+N∑
e=1

(
λae

kl W
eb
r 〈k, l; r, r|jj 〉 − Wae

r λeb
kl 〈r, r; k, l|jj 〉) .

This implies that the parameter λab
j,m behaves as h̄j+m. Then, the Poisson brackets of the W

generators take the form{
Wab

j ,Wcd
�

}
h̄

= δbcWad
j+� − (−1)([a]+[b])([c]+[d])δadWcb

j+� − h̄P abcd
h̄ (W) (4.3)

where Pabcd
h̄ (W), polynomial in the Ws, has only positive (or null) powers of h̄. This clearly

shows that the Wp(M|N) superalgebra is a deformation of the superalgebra generated by
Wab

j ≡ J ab
jj and with defining (undeformed) Poisson brackets:{

Wab
j ,Wcd

�

}
0 = δbcWad

j+� − (−1)([a]+[b])([c]+[d])δadWcb
j+� if j + � < p (4.4)

= 0 if j + � � p (4.5)

One recognizes in this superalgebra a (enveloping) polynomial algebra based on gl(M|N)

quotiented by the relations Wab
j = 0 if j � p. In other words, this algebra is nothing but a

truncated polynomial algebra, and the W-superalgebra is a deformation of it. �

Property 4.2. There exist two sets of generators
{±W̄ab

j

}
j=0,...

in Wp(M|N) such that,
∀a, b, c, d = 1, . . . ,M + N ,

∀j � 1
{±W̄ab

1 , ±W̄ cd
j

} = δcb ±W̄
ad

j+1 − (−1)([a]+[b])([c]+[d])δad±W̄
cb

j+1

+ (−1)[c]([a]+[b])+[a][b] (W̄ cb
0

±W̄ad
j − ±W̄ cb

j W̄ ad
0

)
(4.6)

∀j � 0
{
W̄ab

0 , ±W̄ cd
j

} = δcb±W̄
ad

j − (−1)([a]+[b])([c]+[d])δad±W̄
cb

j . (4.7)

The generators ±W̄ab
j are polynomials of degree (j + 1) in the original generators Wab

j and
are recursively defined by

W̄ab
0 ≡ +W̄ab

0 = −W̄ab
0 = pWab

0 (4.8)
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±W̄ab
1 = ±p(p2 − 1)

6
Wab

1 +
p(p ± 1)

2

M+N∑
e=1

(−1)[e]Wae
0 Web

0 (4.9)

and for j > 1,

±W̄ab
j =

j+1∑
n=1

∑
|
s|=j+1−n

±α
n,j


s

M+N∑
i1,...,in−1=1

(−1)[i1]+···+[in−1] Wai1
s1

Wi1i2
s2

· · ·Win−1b
sn

(4.10)

for some numbers ±α
n,j


s determined by (4.6). The summation on 
s is understood as a
summation on n positive (or null) integers (s1, . . . , sn) ≡ 
s such that |
s| ≡ ∑n

i=1 si = j +1−n.
The subsets

{±W̄ab
j

}
j=0,...,p−1 form two bases of Wp(M|N), the other generators{±W̄ab

j

}
j�p

being polynomials in the basis elements.

Proof. As in [8] relations (4.6) and (4.7) can be proved by recursion on j . Indeed, a direct
calculation shows that (4.7) is obeyed by (4.10) for any numbers ±α

n,j


s . Then, (4.6) uniquely
determine these numbers, up to the choice made in (4.9). �

Remark 1. Relations (4.6) allow us to compute recursively all the PB of Wp(M|N) but{±W̄ 0
j , ±W̄ 0

k

}
, where

±W̄ 0
j =

M+N∑
a=1

±W̄aa
j . (4.11)

In the following, we will assume that{±W̄ 0
j , ±W̄ 0

k

} = 0 ∀j, k. (4.12)

Note that (4.6) and (4.7) prove that (4.12) is valid for j = 0, 1 and ∀k. Let us also remark
that, since Wp(M|N) is a deformation of gl(M|N) (see below), the lemma B.1 ensures that{±W̄ 0

j , ±W̄ 0
k

}
is central in Wp(M|N).

The first and the last coefficients that appear in definition (4.10) can be computed by
recursion (∀j � 0):

±α
1,j

j = (±1)j (j !)2

(
p + j

2j + 1

)
(4.13)

−α
j,j+1
(0,...,0) =

(
p

j + 1

)
(4.14)

+α
j,j+1
(0,...,0) =

(
p + j

j + 1

)
. (4.15)

The non-vanishing coefficients (4.13) show that the generators ±W̄ab
j for j < p are indeed

independent, since these generators write ±W̄ab
j = ±α

1,j

j Wab
j + lower, where lower is a

polynomial in Wk with k < j .

Corollary 4.3. The change of generators between
{

+W̄ab
j

}
j=1,...

and
{−W̄ab

j

}
j=1,...

is given by

±W̄ab
j =

j+1∑
n=1

(−1)j+1+n
∑

|
s|=j+1−n

M+N∑
i1,...,in−1=1

∓W̄
ai1

s1
· · · ∓W̄ in−1b

sn
(−1)[i1]+···+[in−1]. (4.16)
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Proof. The procedure is the same as in [8]: a direct calculation shows that indeed expression
(4.16) satisfies (4.6), (4.7), and that (4.16) is valid for ±W̄ab

1 . �

Corollary 4.4. The basis
{−W̄ab

j

}
j=1,...,p−1 is such that −W̄ab

j = 0 for j � p. In the basis{
+W̄ab

j

}
j=1,...,p−1 all the +W̄ab

j generators (j � p) are non-vanishing.

Proof. (4.15) shows that +W̄ab
j 	= 0 for j � p. Now, using (4.6) for j = p, with the form

(4.10), one gets α
n,p


s = (−1)nA with A = 0 or 1. Then, (4.14) shows that A = 0 for −W̄ab
p .

Finally, (4.6) ensures that −W̄ab
j = 0, for j > p, as soon as −W̄ab

p = 0. �

4.2. Wp(M|N) and Yp(M|N)

We have shown that both Wp(M|N) and Yp(M|N) are deformations of a truncated polynomial
superalgebra based on gl(M|N). It remains to show that these deformations coincide.

Theorem 4.5. The Wp(M|N) superalgebra is the truncated super-Yangian Yp(M|N).

Proof. First, the map −W̄ab
j → T ab

j−1,∀0 � j < p, between basis vectors shows that
Wp(M|N) and Yp(M|N) are isomorphic as vector spaces (and indeed coincide with gl(M|N)).
Since they are both deformations of gl(M|N)p, we can introduce ϕW and ϕT , the cochains
associated with the deformation corresponding to Wp(M|N) and Yp(M|N) respectively.

Now, remark that the two superalgebras have identical (in fact undeformed) PB on the
couples

(−W̄ab
0 , −W̄ cd

j

)
, which proves that the cochains ϕW and ϕT coincide (in fact vanish)

on these points. It is also the case for the couples
(−W̄ 0

j , −W̄ 0
k

)
, due to formula (2.27) and

assumption (4.12).
Moreover, property 4.2 shows that the cochains ϕW and ϕT coincide on the couples(−W̄ab
1 , −W̄ cd

j

)
. Since ϕW and ϕT are cocycles, this is enough (using lemma B.1) to prove

that they are identical. �

4.3. Representations of Wp(M|N)

Theorem 4.6. Any finite-dimensional irreducible representation of the Wp(M|N)

superalgebra is highest weight. It has a unique (up to scalar multiplication) highest weight
vector.

Proof. An irreducible representation π of the Wp(M|N) superalgebra can be lifted to a
representation of the whole super-Yangian by setting π

(
T

ij

(r)

) = 0 for r > n. It is then
obviously irreducible for the super-Yangian, and thus is highest weight by theorem 2.2. �

Theorem 4.7 (Finite dimensional irreducible representations of (Wp(M|N)). Any finite-
dimensional irreducible representation of the Wp(M|N) superalgebra is isomorphic to an
evaluation representation or to the subquotient of tensor product of at most p evaluation
representations.

Proof. By evaluation representations for Wp(M|N) superalgebra, we mean definitions 2.4
and 2.5 with the change T ab

r → Wab
r−1 (i.e. the evaluation representations of the truncated

super-Yangian). Property (2.21) clearly shows that the (subquotient of ) tensor product of n
evaluation representations is a representation of the truncated super-Yangian as soon as n � p.
It also shows that if it is irreducible for the super-Yangian, then it is also irreducible for the
truncated super-Yangian and that they are finite dimensional.
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Now conversely, an irreducible representation π of the Wp(M|N) superalgebra can be
lifted to a representation of the whole super-Yangian by setting π

(
T

ij

(r)

) = 0 for r > n. It is
then obviously irreducible for the super-Yangian, and thus is isomorphic to the (irreducible
subquotient of ) tensor product of evaluation representations. �

5. Twisted super-Yangians

Twisted super-Yangian have been introduced in [17]. We recall here the main results.
We start with the super-Yangian Y (M|2n), and introduce the transposition t on matrices,

Et
ab = (−1)[a]([b]+1)θaθbEb̄ā with

{
ā = M + 1 − a for 1 � a � M

ā = 2M + 2n + 1 − a for M < a � M + 2n

(5.1)

where the θa are given by

θa = 1 for 1 � a � M

θa = sg
(

2M+2n+1
2 − a

)
for M + 1 � a � M + 2n.

(5.2)

Note that we have the relations

(−1)[a]θaθā = 1 and [a] = [ā] ∀a. (5.3)

Then, we define on Y (M|2n)

τ [T (u)] =
∑
a,b

τ [T ab(u)]Eab =
∑
a,b

T ab(−u)Et
ab (5.4)

which for the super-Yangian generators reads

τ (T ab(u)) = (−1)[a]([b]+1)θaθbT
b̄ā(−u) (5.5)

where τ is an algebra automorphism of Y (M|2n).
One defines in Y (M|2n)

S(u) = T (u)τ [T (u)] =
M+N∑
a,b=1

Sab(u)Eab = I +
M+N∑
a,b=1

∑
n>0

u−nSab
(n)Eab (5.6)

Sab
(n) =

M+N∑
c=1

n∑
p=0

(−1)p(−1)[c]([b]+1)θcθbT
ac
(n−p)T

b̄c̄
(p) (5.7)

Sab(u) =
M+N∑
c=1

(−1)[c]([b]+1)θcθbT
ac(u)T b̄c̄(−u). (5.8)

Definition 5.1. S(u) defines a subalgebra of the super-Yangian, the twisted super-Yangian
Y (M|2n)+. It obeys the following relation,

R12(u − v)S1(u)R′
12(u + v)S2(v) = S2(v)R′

12(u + v)S1(u)R12(u − v) (5.9)

where R(x) is the super-Yangian R-matrix,

R′(x) = I +
1

x
Q = Rt1(−x) with Q = P t1 (5.10)

and t1 is the transposition (5.1) in the first auxiliary space.
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Introducing

τ (S(u)) =
M+N∑
a,b=1

Sab(−u)Et
ab (5.11)

one obtains

τ (Sab(u)) = (−1)[a]([b]+1)θaθbS
b̄ā(−u). (5.12)

Then, using expression (5.8) and the commutation relations of the super-Yangian, one can
show the symmetry relation

τ (S(u)) = S(u) +
θ0

2u
(S(u) − S(−u)). (5.13)

Note that relation (5.9) is equivalent to the following commutator,

[S1(u), S2(v)] = 1

u − v
(P12S1(u)S2(v) − S2(v)S1(u)P12) − 1

u + v
(S1(u)Q12S2(v)

− S2(v)Q12S1(u)) +
1

u2 − v2
(P12S1(u)Q12S2(v) − S2(v)Q12S1(u)P12)

(5.14)

and also to

[Sab(u), Scd(v)} = (−1)([a]+[b])[c]

u − v
(−1)[a][b](Scb(u)Sad(v) − Scb(v)Sad(u))

− (−1)([a]+[b])[c]

u + v

(
(−1)[a][c]θbθc̄S

ac̄(u)Sb̄d(v) − (−1)[b][d]θāθdS
cā(v)Sd̄b(u)

)
+

(−1)([a]+[b])[c]

u2 − v2
(−1)[a]θaθb(S

cā(u)Sb̄d (v) − Scā(v)Sb̄d (u)). (5.15)

As for Y (M|N), one can show that Y (M|2n)+ is a deformation of U(osp(M|2n)[x]).

5.1. Finite-dimensional irreducible representations of twisted super-Yangians

The finite-dimensional irreducible representations of twisted super-Yangians have been studied
in [17]. We recall here the main results. As for super-Yangians, they rely on the evaluation
morphism:

Property 5.2. The following map defines an algebra inclusion

Y (M|2n)+ → U[osp(M|2n)]

S(u) → F(u) = I +
1

u + 1
2

F
(5.16)

where the osp(M|2n) generators J ab have been gathered in the matrix

F =
M+N∑
a,b=1

J abFab with Fab = Eab − (−1)[a]([b]+1)θaθb Eb̄ā. (5.17)

Using the above inclusion, one constructs from any finite-dimensional irreducible
representation of osp(M|2n), a finite-dimensional irreducible representation of Y (M|2n)+.

Theorem 5.3. Every finite-dimensional irreducible Y (M|2n)+-module contains a unique (up
to scalar multiples) highest weight vector.
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A sufficient condition for the existence of irreducible finite-dimensional representations
has been given in [17]. It corresponds to an explicit construction of the representation
as a tensor product of Y (M|N) evaluation representations and possibly one osp(M|2n)

representation (using the evaluation morphism). These sufficient conditions were conjectured
to be necessary; we will assume this conjecture in the following.

5.2. Classical twisted super-Yangians

As for super-Yangians, one can introduce a classical (Poisson bracket) version of twisted
super-Yangians. The calculation is the same as in section 2.4: one writes R(u − v) =
I + h̄r(u − v), R′(u + v) = I + h̄r ′(u + v), and considers the terms in h̄. One obtains

{S1(u), S2(v)} = r12(u − v)S1(u)S2(v) − S2(v)S1(u)r12(u − v)

+ S2(v)r ′
12(u + v)S1(u) − S1(u)r ′

12(u + v)S2(v). (5.18)

In components, this reads

{S(q)1, S(r)2} =
µ−1∑
s=0

[P12S(s)1S(r+q−s−1)2 − S(r+q−s−1)2S(s)1P12

+ (−1)q+s(S(s)1Q12S(r+q−s−1)2 − S(r+q−s−1)2Q12S(s)1)]

with µ = min(q, p).
Let us remark that the symmetry relation (5.13), in its classical form, takes the form

τ (S(u)) = S(−u) (5.19)

because the T ab(u) generators are now Z2-commuting.

6. Folded W-superalgebras revisited

It is well known that the gl(M|N) superalgebra can be folded (using an outer automorphism)
into an orthosymplectic one (see e.g. [20]). In the same way, foldedW-superalgebras have been
defined3 in [18], and shown to be W-superalgebras based on orthosymplectic superalgebras.

We present here a different proof of this property, adapted to our purpose, and generalized
to the case of the automorphisms presented in section 5. For such a purpose, we use the Dirac
bracket definition introduced in section 3.1.

6.1. Automorphism of gl(Mp|2np) and Wp(M|N)

As for the super-Yangian, one introduces an automorphism of gl(Mp|2np) defined by

τ
(
J ab

jm

) = (−1)j+1(−1)[a]([b]+1)θaθbJ
b̄,ā
jm (6.1)

where θa is defined in (5.2), and ā is given in (5.1).
To prove that τ is an automorphism of gl(Mp|2np), we need the following property of

the Clebsch–Gordan coefficient, which was proved in [8]. Note that we need this property
only for the algebra gl(p), because of the decomposition gl(Mp|2np) ∼ gl(M|2n) ⊗ gl(p)

used here (see appendix A).

Property 6.1. The Clebsch–Gordan-like coefficients obey the rule

〈j,m; t, q|r, s〉 = (−1)j+t+r〈t, q; j,m|r, s〉. (6.2)
3 Strictly speaking, it is the folding of ‘affine’ W-superalgebras that has been defined in [18], but the folding of finite
W-superalgebras can be defined by the same procedure.
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Note that in the above formula, it is not the Z2-grades [j ], [t] or [r] that are used, but really
j, t and r themselves.

With this property, it is a simple matter of calculation to show that τ defined in (6.1) is an
automorphism of gl(Mp|2np).

6.2. Folding gl(Mp|2np) and Wp(M|2n)

6.2.1. gl(Mp|2np). One considers the subalgebra Ker(I−τ ) in gl(Mp|2np). It is generated
by the combinations

Kab
jm = J ab

jm + τ
(
J ab

jm

) = J ab
jm − (−1)j (−1)[a]([b]+1)θaθbJ b̄ā

jm (6.3)

which obey the symmetry relation

τ
(
Kab

jm

) = Kab
jm i.e. Kab

jm = (−1)j+1(−1)[a]([b]+1)θaθbKb̄ā
jm. (6.4)

Using the PB{
J ab

jm, J cd
k�

} =
j+k∑

r=|j−k|

r∑
s=−r

〈j,m; k, �|r, s〉
(
δbcJ ad

rs − (−1)([a]+[b])([c]+[d])(−1)j+k+rδadJ cb
rs

)
one can compute the commutation relations{
Kab

jm,Kcd
k�

} =
j+k∑

r=|j−k|

r∑
s=−r

〈j,m; k, �|r, s〉
(
δbcKad

rs − (−1)jθaθb(−1)[a]([b]+1)δācKb̄d
rs

− (−1)j+k+r (−1)([a]+[b])([c]+[d])
[
δadKcb

rs − (−1)j θaθb(−1)[a]([b]+1)δb̄dKcā
rs

])
.

After a rescaling of Kab
jm, one recognizes the superalgebra osp(Mp|2np).

Looking at the decomposition of the fundamental of gl(Mp|2np) with respect to the
principal embedding of sl(2) in (M + 2n).sl(p) (see [18, 19] for the technique used here) one
shows that the subalgebra (M+2n).sl(p), generated by the J aa

jms, is folded into an (m+n).sl(p)

(respectively (m + n).sl(p) ⊕ so(p)) when M = 2m (respectively M = 2m + 1).
In the following, we will denote this subalgebra by [M.sl(p)]τ ⊕ n.sl(p).

6.2.2. Wp(M|2n). We are now dealing with the enveloping algebra of gl(Mp|2np) that we
denote by U[gl(Mp|2np)] ≡ U(Mp|2np). One introduces the coset

U(Mp|2np)+ ≡ U(Mp|2np)/K where K = U(Mp|2np) · L with L spanned by

J ab
jm − τ

(
J ab

jm

) ∀ a, b, j,m

Wp(M|2n)+ ≡ Wp(M|2n)/J where J = Wp(M|2n) · I with I spanned by

Wab
j − τ

(
Wab

j

) ∀ a, b, j.

We have the property

Property 6.2. τ is an automorphism of U(Mp|2np) provided with the Dirac brackets:

τ
({

J ab
jm, J cd

kl

}
∗

)
= {

τ
(
J ab

jm

)
, τ

(
J cd

kl

)}
∗ . (6.5)

Hence, τ is also an automorphism of Wp(M|2n).

Proof. It is obvious that τ is an automorphism of Poisson brackets on U(Mp|2np). Moreover,
due to the form of the constraints (3.13), τ acts as a relabelling (up to a sign) of the constraints,

τ (ϕα) = εα′ϕα′ where α′ ≡ τ (α) and εα′ = εα = ±1 (6.6)
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which shows that τ (�) = �. We also have

τ (�αβ) = εα′εβ ′�α′β ′ . (6.7)

This implies that

τ ({A,ϕα}�αβ{ϕβ, B}) = {τ (A), ϕα′ }�α′β ′ {ϕβ ′, τ (B)} = {τ (A), ϕα}�αβ{ϕβ, τ (B)}. (6.8)

This shows that this automorphism is compatible with the set of constraints � and thus τ is
an automorphism of the Dirac brackets. �

Corollary 6.3. The Dirac brackets provide Wp(M|2n)+ with an algebraic structure.

Proof. We define on Wp(M|2n)+ a bracket which is just the previous Dirac bracket restricted
to this coset. Since Wp(M|2n)+ is generated by elements of the form W + τ (W), we have

{W + τ (W),W ′ + τ (W ′)}∗ = {W,W ′} + {τ (W), τ (W ′)}∗ + {τ (W),W ′}∗ + {W, τ(W ′)}∗
= {W,W ′} + {τ (W),W ′}∗ + τ ({W,W ′}∗ + {τ (W),W ′}∗). �

Indeed we have

Property 6.4. The Wp(M|2n)+ superalgebra is the W[osp(Mp|2np), [M.sl(p)]τ ⊕ n.sl(p)]
superalgebra.

Above, the [M.sl(p)]τ (respectively n.sl(p)) subalgebra is understood as the subalgebra
of the orthogonal (respectively symplectic) algebra in osp(Mp|2np).

Proof. On the coset, we have J ab
jm ≡ τ

(
J ab

jm

) ≡ 2Kab
jm. We introduce on U(Mp|2np)

2Dϕα = ϕα − τ (ϕα) 2Sϕα = ϕα + τ (ϕα). (6.9)

Since these generators satisfy Dϕα = −τ (Dϕα) and Sϕα = τ (Sϕα) and are in gl(Mp|2np),
we have

{Sϕα,Dϕβ } ∈ I i.e. {Sϕα,Dϕβ } = 0 on Wp(M|2n)+. (6.10)

Similarly, we define

D�αβ = {Dϕα,Dϕβ } S�αβ = {Sϕα, Sϕβ } (6.11)

which obey the properties

D�αβ = εα′εβ ′D�α′β ′ = −εα′D�α′β = −εβ ′D�αβ ′ (6.12)

S�αβ = εα′εβ ′S�α′β ′ = εα′S�α′β = εβ ′S�αβ ′ (6.13)

�αβ = S�αβ + D�αβ on Wp(M|2n)+. (6.14)

We will say that a matrix is τ -antisymmetric when it satisfies a relation such as (6.12), and
τ -symmetric when it obeys (6.13). τ -antisymmetric matrices are orthogonal to τ -symmetric
ones,

D� · S� = 0 since

(D� · S�)αβ =
∑

γ

D�αγ S�γβ =
∑
γ ′

D�αγ ′S�γ ′β = −
∑

γ

D�αγ S�γβ

where S�αβ is the matrix of constraints of osp(Mp|2np) reduced with respect to [M.sl(p)]τ ⊕
n.sl(p). Thus, it is invertible and the associated Dirac brackets define the superalgebra
W(osp(Mp|2np), [M.sl(p)]τ ⊕ n.sl(p)). It remains to show that, on Wp(M|2n)+, the
previously defined Dirac brackets coincide with the latter Dirac brackets.
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For that purpose, we use the form � = �0(I + �̂), given in [8], where �0 is an invertible
τ -symmetric matrix and �̂ is nilpotent (of finite order r). Introducing the τ -symmetrized and
antisymmetrized part of �̂, one deduces

�−1 = �−1
0

r∑
n=0

(−1)n(S�̂ + D�̂)n = �−1
0

r∑
n=0

(−1)n((S�̂)n + (D�̂)n) = S�−1 + D�−1

which shows that D� is also invertible.
On Wp(M|2n)+, we have{

Kab
(m),K

cd
(n)

}
∗ = {

Kab
(m),K

cd
(n)

} − {
Kab

(m),Dϕα + Sϕα

}
�αβ

{
Dϕβ + Sϕβ,Kcd

(n)

}
(6.15)

= {
Kab

(m),K
cd
(n)

} − {
Kab

(m), Sϕα

}
�αβ

{
Sϕβ,Kcd

(n)

}
(6.16)

= {
Kab

(m),K
cd
(n)

} − {
Kab

(m), Sϕα

}
(S�αβ + D�αβ)

{
Sϕβ,Kcd

(n)

}
. (6.17)

From the τ -antisymmetry of D�−1, we obtain

{., Sϕα}D�αβ {Sϕβ, .} = {., Sϕα′ }D�α′β{Sϕβ, .} = −{., Sϕα}D�αβ{Sϕβ, .} = 0 (6.18)

which leads to the Dirac brackets,{
Kab

(m),K
cd
(n)

}
∗ = {

Kab
(m),K

cd
(n)

} − {
Kab

(m), Sϕα

}
S�αβ

{
Sϕβ,Kcd

(n)

}
. (6.19)

These Dirac brackets are just those of the W(osp(Mp|2np), [M.sl(p)]τ ⊕ n.sl(p))

superalgebra, by definition of S�. �

7. Folded W-algebras as truncated twisted Yangians

7.1. Classical case

We start with the Wp(M|2n) superalgebra in the Yangian basis. The Poisson brackets are

{T(m)1, T(n)2} =
min(m,n)−1∑

r=0

(P12T(r)1T(m+n−r)2 − T(r)2T(m+n−r)1P12) (7.1)

with the convention T(m) = 0 for m > p. The action of the automorphism τ , both for twisted
super-Yangians and folded Wp(M|2n) superalgebras, reads

τ (T(m)) = (−1)mT t
(m). (7.2)

However, from the twisted super-Yangian point of view, one selects the generators

S(m) =
∑

r+s=m

(−1)sT(r)T
t
(s)

while in the folded W-superalgebra case, one constrains the generators to T(m) = (−1)mT t
(m).

Although the procedures are different (and indeed lead to different generators), we have

Theorem 7.1. As an algebra, the W-superalgebra W(osp(Mp|2np), [M.sl(p)]τ ⊕ n.sl(p))

is isomorphic to the truncation (at level p) of the (classical) twisted super-Yangian Y (M|2n)+.
More precisely, we have the correspondences

Yp(2m + 1|2n)+ ←→ W[osp(2mp + p|2np), (m + n).sl(p) ⊕ so(p)]

Yp(2m|2n)+ ←→ W[osp(2mp|2np), (m + n).sl(p)].
(7.3)

Proof. We prove this theorem by showing that the Dirac brackets of the foldedW-superalgebra
coincide with the Poisson brackets (5.18) with the truncation S(m) = 0 for m > p.
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We start with the Wp(M|2n) superalgebra in the truncated super-Yangian basis,

{T(q)1, T(r)2} =
µ−1∑
s=0

(P12T(s)1T(r+q−s−1)2 − T(r+q−s−1)2T(s)1P12) with T(s) = 0

for s > p and µ = min(q, r, p). (7.4)

In this basis, we define

2ϕ(s) = T(s) − (−1)sT t
(s) and 2K(s) = T(s) + (−1)sT t

(s). (7.5)

The folding (of the W-superalgebra) corresponds to

ϕ(s) = 0 i.e. K(s) = (−1)sKt
(s). (7.6)

It is a simple matter of calculation to get

2{K(q)1,K(r)2} =
µ−1∑
s=0

[P12K(s)1K(r+q−s−1)2 − K(r+q−s−1)2K(s)1P12

+ (−1)q+s(K(s)1Q12K(r+q−s−1)2 − K(r+q−s−1)2Q12K(s)1)] (7.7)

that is to say

2{K1(u),K2(v)} = [r12(u − v),K1(u)K2(v)]

+ K2(v)r ′
12(u + v)K1(u) − K1(u)r ′

12(u + v)K2(v).

These PB are equivalent to relation (5.18) for S(u) ≡ K
(

u
2

)
. Constraint (7.6) is then rewritten

as τ (S(−u)) = S(u). Thus, the folded W-superalgebra and the truncated twisted super-
Yangian are defined by the same relations. �

7.2. Quantization and representations of W-superalgebras

Now that folded W-superalgebras have proved to be truncations of twisted super-Yangians at
classical level, there quantization is very simple. It can be identified with the truncated twisted
super-Yangian at quantum level,

R12(u − v)S1(u)R′
12(u + v)S2(v) = S2(v)R′

12(u + v)S1(u)R12(u − v) (7.8)

with


R12(x) = I − 1

x
P12 R′

12(x) = I − 1
x
Q12

S(u) =
p∑

m=0

u−mS(m) S(0) = I.
(7.9)

Using the representation classification of twisted super-Yangians given in [17], one can then
deduce the classification of irreducible finite-dimensional representations for truncated twisted
super-Yangians in the same way as done in [10] for ordinary twisted Yangians. For conciseness,
we will only sketch the results. In particular, one obtains the following theorems.

Theorem 7.2. Any finite-dimensional irreducible representation of the Wp(M|2n)+

superalgebra is highest weight.

Proof. Same proof as for theorem 4.6. �

Theorem 7.3. Any finite-dimensional irreducible representation of the Wp(M|2n)+

superalgebra is isomorphic to an evaluation representation, or to the (irreducible subquotient
of ) tensor product of at most [p/2] evaluation representations of Y (M|2n), and possibly an
osp(M|2n) representation.
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Proof. Same proof as for twisted Yangians, see [10], using the results given in [17] for
Y (M|2n)+. Indeed, as for the gl(M|N) case, one needs to have S(r) = 0 for r � p

to get a representation of the W-superalgebra. This constrains the number of evaluation
representations allowed to be tensorized (to get a representation). The difference with the
Y (M|N) case lies in the quadratic form S(u) = T (u)τ(T (−u)), which lowers the maximum
number of terms in the tensor product. The occurrence of an osp(M|2n) representation is due
to the classification given in [17]. �

Reasoning as in [10], one can also obtain a condition on the weights of the representation.
We omit it here, due to the lack of place.

Remark 2. As for W-algebras based on so(M) and sp(2n), see [10] for more details, one
could think that W-superalgebras based on osp(M|2n) are related to super-Yangians based on
osp(M|2n) instead of twisted super-Yangians. However, a simple counting (using the method
given in [19]) of the generators shows that it is the twisted super-Yangians that have to be
considered.

Appendix A. General settings on gl(Mp|Np)

A.1. Clebsch–Gordan-like coefficients

We start with the gl(Mp|Np) superalgebra in its fundamental representation, and consider the
sl(2) principal embedding in (M + N)gl(p) ≡ gl(p) ⊕ · · · ⊕ gl(p)︸ ︷︷ ︸

M+N

.

In the fundamental representation, one can view gl(Mp|Np) as gl(p)⊗gl(M|N), so that
the generators of the sl(2) can be written as ε±,0 ≡ e±,0 ⊗ 11M+N . The e±,0 are the generators
of the sl(2) algebra principal in gl(p) and verify [e0, e±] = ±e± and [e+, e−] = e0. The
generator 11M+N is the identity generator in gl(M|N).

Under the adjoint action of the sl(2), gl(p) ⊗ gl(M|N) can be decomposed into sl(2)

multiplets: Mab
jm ≡ Mjm ⊗ Eab with a, b = 1, . . . ,M + N ; −j � m � j ; 0 � j � p − 1.

The Mjm are p × p matrices resulting from the decomposition of gl(p) into sl(2)

multiplets. Properties of the Mjm are gathered in appendix A of [8].
The Eab are (M + N) × (M + N) matrices with 1 at position (a, b). They are the graded

part of Mab
jm which is even if a + b ≡ 0 (mod 2) and odd otherwise.

Following appendix A of [8] we have[
ε+,M

ab
jm

] = j (j + 1) − m(m + 1)

2
Mab

j,m+1 (A.1)[
ε−,Mab

jm

] = Mab
j,m−1 (A.2)[

ε0,M
ab
jm

] = mMab
jm. (A.3)

The product law (in the fundamental representation) reads

Mab
jm · Mcd

ln = δbc

j+l∑
r=|j−l|

r∑
s=−r

〈j,m; l, n|r, s〉Mad
rs (A.4)

which leads to the following commutation relations (valid in the abstract algebra):[
Mab

jm,Mcd
ln

] =
j+l∑

r=|j−l|

r∑
s=−r

(
δbc〈j,m; l, n|r, s〉Mad

rs

− (−1)([a]+[b])([c]+[d])δad〈l, n; j,m|r, s〉Mcb
rs

)
.
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The scalar product is:

η
ab,cd
j,m;l,n = str

(
Mab

jm · Mcd
ln

) = (−1)[a]δadδcb(−1)mδj,�δm+n,0ηj (A.5)

for some non-vanishing coefficient ηj , given in [8].
The ‘Clebsch–Gordan-like’ coefficients are then given by

〈jm, k�|r, s〉 = (−1)s

ηr

Tr(MjmMk�Mr,−s ). (A.6)

We recall that in (A.6) it is the usual trace operator which is involved, since we are in the gl(p)

Lie algebra.

A.2. Structure constants

We consider a Lie superalgebra G in its fundamental representation, with homogeneous
generators ta . As usual, we can define a gradation index [ ] such that

[a] =
{

0 if ta bosonic
1 if ta fermionic.

The commutation relations are [ta, tb} = fab
ctc (summation over repeated indices). The

structure constants have the following property: fab
c 	= 0 ⇒ [a] + [b] + [c] = 0. They obey

the graded Jacobi identity

fab
dfdc

e = fbc
dfad

e + (−1)[b][c]fac
dfdb

e. (A.7)

Note that the adjoint representation for superalgebras takes the form

ad(ta)
c
b = −(−1)[a][b]fab

c. (A.8)

The invariant metric gab is proportional to strF (tatb), where the supertrace is taken in the
fundamental representation. Note that the Killing form, which is the supertrace in the adjoint
representation, can be degenerate (in fact null) for some superalgebras, e.g. gl(M|M) [20].
The invariant metric has the following properties:

gab = (−1)[a][b]gba and gab = 0 if [a] 	= [b]. (A.9)

We introduce its inverse gab and use it to raise and lower the indices. For instance,
ta ≡ gabtb and f ab

c ≡ gaαgbβfαβ
γ gγc; we therefore have [ta, tb] = f ab

ct
c.

Defining the tensor fabc = fab
γ gγc, one can take it totally (graded) antisymmetric,

fabc = −(−1)[a][b]fbac = −(−1)[b][c]facb. (A.10)

Appendix B. Deformations and cohomology

Let us consider a Lie superalgebra A with homogeneous generators uα and Lie bracket,

{uα, uβ} = fαβ
γ uγ . (B.1)

The gradation index [] is such that [α] = 0 if uα is bosonic and [α] = 1 if uα is fermionic.
We aim at constructing a deformation of the Lie bracket (B.1), following e.g. [16].
For such a purpose, we introduce n-cochains (n ∈ Z>0), i.e. linear maps χ(n) from An to

A with the following property:

χ(n)
(
uα1 , . . . , uαi

, uαi+1 , . . . , uαn

) = (−1)1+[αi ][αi+1]χ(n)
(
uα1 , . . . , uαi+1 , uαi

, . . . , uαn

)
. (B.2)
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The Chevalley derivation δ maps n-cochains to (n + 1)-cochains,

(δχ(n))
(
uα0 , uα1 , . . . , uαn

) =
n∑

i=0

(−1)i+εi
{
uαi

, χ(n)
(
uα0 , . . . , ûαi

, . . . , uαn

)}
+

∑
0�i<j�n

(−1)i+j+εij χ(n)
({

uαi
, uαj

}
, uα0 , . . . , ûαi

, . . . , ûαj
, . . . , uαn

)
(B.3)

where εi = [αi]
(∑

k<i[αk]
)

and εij = εi + εj + [αi][αj ].
It obeys δ2 = 0, so that one can define n-cocycles, which are closed n-cochains

(δχ(n) = 0), and coboundaries, which are exact n-cochains (χ(n) = δχ(n−1)). As usual,
one considers closed cochains modulo exact ones to study the cohomology associated with δ.

Here, we will be mainly concerned with the action of the Chevalley derivation on 2-
cochains,

(δχ)(u, v,w) = {u, χ(v,w)} − (−1)[u][v]{v, χ(u,w)} + (−1)[w]([u]+[v]){w,χ(u, v)}
− χ({u, v}, w) + (−1)[v][w]χ({u,w}, v) − (−1)[u]([v]+[w])χ({v,w}, u).

We now consider a deformation of the enveloping algebra U(A),

{uα, uβ}h̄ = fαβ
γ uγ + h̄ϕh̄(uα, uβ) (B.4)

where ϕh̄ is a 2-cochain which may depend on positive powers of h̄. Asking the bracket {·, ·}h̄
to obey the graded Jacobi identity is equivalent to saying that ϕh̄ is a 2-cocycle:

δϕh̄(uα, uβ, uγ ) = 0 (B.5)

We now prove a result that is used in the present paper.

Lemma B.1. Let gl(M|N)p be the polynomial algebra based on gl(M|N), truncated at order
p, and uab

j (j < p and a, b = 1, . . . ,M + N) the corresponding generators. Let ϕ be a

2-cocycle with values in U(gl(M|N)p). We introduce u0
j = ∑M+N

a=1 uaa
j .

If ϕ
(
uab

0 , ucd
j

)
and ϕ

(
uab

1 , ucd
j

)
,∀a, b, c, d = 1, . . . ,M + N and ∀j = 0, . . . , p − 1

are known, then ϕ is completely determined up to ϕ
(
u0

j , u
0
k

)
, j, k > 1, which is central in

U(gl(M|N)p).

Proof. We write the cocycle condition for a triplet
(
uab

j , ucd
k , u

eg

�

)
,

ϕ
({

uab
j , ucd

k

}
, u

eg

�

)
+ (−1)([c]+[d])([e]+[g])ϕ

({
uab

j , u
eg

�

}
, ucd

k

)
− (−1)([a]+[b])([c]+[d]+[e]+[g])ϕ

({
ucd

k , u
eg

�

}
, uab

j

) = {
uab

j , ϕ
(
ucd

k , u
eg

�

)}
− (−1)([a]+[b])([c]+[d]) {

ucd
k , ϕ

(
uab

j , u
eg

�

)}
− (−1)([a]+[b])([c]+[d]+[e]+[g])

{
u

eg

� , ϕ
(
uab

j , ucd
k

)}
. (B.6)

We write the commutation relations of gl(M|N)p as{
uab

j , ucd
k

} = δbcuad
j+k − (−1)([a]+[b])([c]+[d])δaducb

j+k with uab
n = 0 n > p ∀a, b.

(B.7)

Taking as a special case e = g = a 	= b and � = 1, one obtains from (B.6)

ϕ
(
uab

j+1, u
cd
k

) = {
uab

j , ϕ
(
ucd

k , uaa
1

)} − ϕ
({

uab
j , ucd

k

}
, uaa

1

)
+ (−1)([c]+[d])([a]+[b])

(
(δda − δca)ϕ

(
ucd

k+1, u
ab
j

)
− {

uaa
1 , ϕ

(
uab

j , ucd
k

)} − {
ucd

k , ϕ
(
uab

j , uaa
1

)})
. (B.8)
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Taking as a special case j = 1, k = 2, this last equation shows that one can compute
ϕ
(
uab

2 , ucd
2

)
, for a 	= b, as soon as one knows ϕ

(
ucd

1 , u
eg

j

)
,∀c, d, e, g,∀j . Then, in the same

way, j = 1 allows one to compute ϕ
(
uab

2 , ucd
k+1

)
as soon as one knows ϕ

(
uab

2 , ucd
k

)
.

More generally, if one supposes by induction that ϕ
(
uab

j ′ , u
cd
k

)
,∀j ′ � j,∀k, and ∀c, d,

a 	= b, are known, (B.8) shows that one can compute ϕ
(
uab

j+1, u
cd
k

)
, for a 	= b and ∀k.

Thus, by induction, we have shown that one can compute ϕ
(
uab

j , ucd
k

)
, for a 	= b,∀j,

k, c, d , from the knowledge of ϕ
(
ucd

1 , u
eg

k

)
.

It remains to compute ϕ
(
uaa

j , ubb
k

)
. For such a purpose, we start again with (B.6) now

with a = d 	= b = c and e = g:

ϕ
(
uaa

j+k − (−1)[a]+[b]ubb
j+k, u

ee
�

) = (δae − δbe)
(
ϕ

(
uab

j+�, u
ba
k

)
+ (−1)[a]+[b]ϕ

(
uba

k+�, u
ab
j

))
+

{
uab

j , ϕ
(
uba

k , uee
�

)} − (−1)[a]+[b] {uba
k , ϕ

(
uab

j , uee
�

)}
− (−1)[a]+[b]

{
uee

� , ϕ
(
uab

j , uba
k

)}
. (B.9)

All the terms in the rhs of the above equation are known, so that one can compute4

ϕ
(
(−1)[a]uaa

j − (−1)[b]ubb
j , uee

k

)
,∀a, b, e,∀j, k.

Thus, only ϕ
(
u0

j , u
0
k

)
, where u0

j = ∑M+N
a=1 uaa

j , remains to be computed. Once again, from
(B.6), taking a = b and c = d , and then summing over a and d, one obtains{

u
eg

� , ϕ
(
u0

j , u
0
k

)} = 0 (B.10)

which shows that ϕ
(
u0

j , u
0
k

)
is central in U(gl(M|N)p).

Thus, apart from the values ϕ
(
uab

0 , ucd
k

)
and the just mentioned central terms, we are able

to compute all the expressions ϕ
(
uab

j , ucd
k

)
. This ends the proof. �
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