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Abstract

We show that some finite J/-superalgebras based on gl(M|N) are truncations
of the super-Yangian Y (g/(M|N)). In the same way, we prove that finite
Wh-superalgebras based on osp(M|2n) are truncations of the twisted super-
Yangians Y (gl(M|2n))*. Using this homomorphism, we present these
W-superalgebras in an R-matrix formalism, and we classify their finite-
dimensional irreducible representations.

PACS numbers: 02.20.—a, 11.25.Hf, 11.30.—j

1. Introduction

Wh-algebras have been introduced in the 2d-conformal models as a tool for the study of these
theories. Then, these algebras and their finite-dimensional versions appeared to be relevant in
several physical backgrounds. For more details on WW-algebras, see e.g. [1]. However, a full
understanding of their algebraic structure (and of their geometrical interpretation) is lacking.
The connection of some of these finite WW-algebras with Yangians appeared to be a solution
at least for the algebraic structure. It could be surprising that Yangians [2], which play an
important role in integrable systems, see e.g. [3], enter into the study of algebras originating
from 2d-conformal models. Let us however note that such a connection has already been
remarked in WZW models [4]. For more information on the algebraic structure of Yangians,
see e.g. [5] and references therein.

The existence of an algebra homomorphism between a Yangian based on s/(N) and finite
W(sI(Np), N.sl(p)) algebras was first proved in [6]. Such a connection plays a role in the
study of physical models: for instance, in the case of the N-vectorial non-linear Schrodinger
equation on the real line, the full symmetry is the Yangian Y (g/(N)) = Y (N), but the space
of states with particle number less than p is a representation of the W(gl(Np), p.sl(N))
algebra [7].
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Later, the connection between Yangians and finite W(gl(Np), N.sl(p)) algebras was
proved in the FRT presentation [9] of the Yangian. It appears that in this framework the above
W-algebras are nothing but truncations of the Yangian Y (N), p indicating the level where the
truncation occurs. Thanks to this presentation, an (evaluated) R-matrix for these YV-algebras
was given, and their finite-dimensional irreducible representations were classified [8].

Then, this connection was extended to a class of WW-algebras, namely the algebras of type
Wlso(2mp), m.sl(p)], Wlso((2m+ 1) p), m.sl(p) +so(p)] and W[sp(2np), n.sl(p)], which
were related to truncations of twisted Yangian Y *(N)[10]. Note that although Yangians based
on orthogonal and symplectic algebras exist [2], and admit an FRT presentation [11], it is the
twisted Yangians introduced by Olshanski [12, 13] which enter into the game. The latter are
not Hopf algebras but only Hopf co-ideals in Y (N). Nevertheless, this relation allows us to
give an R-matrix presentation of the JV-algebras under consideration, with however the slight
change that it is an ‘RSRS’ relation which occurs,

Riz(u — v)S1 () R}y (u +v)S2(v) = S2(V) R, (u + ) S1 () Rio(u — v)
differing from the usual FRT (also called ‘RTT’) presentation
R —v)T1(u)T2(v) = T,(0)T1 () R(u — v).

The classification of finite-dimensional irreducible representations of the }V-algebras then
follows [10].

The aim of the present paper is to extend the above correspondence to the case of finite
W-superalgebras, based on Lie superalgebras g/(M|N) and osp(M|2n). As for g/(N) on
the one hand, and so(m) and sp(2n) on the other hand, the treatment for gl(M|N) and for
osp(M|2n) will be very different. Due to this difference, this paper is divided into two
main parts. In the first part, we show that W(gl(Mp|Np), (M + N)gl(p)) superalgebras
are truncations of the super-Yangian based on g/(M|N), leading to an ‘RTT’ presentation of
these W-superalgebras. We use this property to classify the finite-dimensional irreducible
representations of these WW-superalgebras. In the second part, we deal with JV-superalgebras
based on osp(M|N) and twisted super-Yangians. We show that these VV-superalgebras are
truncations of twisted super-Yangians, leading to an ‘RSRS’ presentation of the former and a
classification of their finite-dimensional irreducible representations.

2. Super-Yangian

The super-Yangian Y (gl(M|N)) = Y(M|N) was first defined by Nazarov [14]. It can be
obtained as the generalization of the construction for the Yangian Y (M), based on the Lie
algebra g/ (M), to the case of the Lie superalgebra g/(M|N). Its representations have been
studied by Zhang [15].

2.1. Introductionto Y (M|N)

The Lie superalgebra g/(M|N) is a Z,-graded vector space over C spanned by the basis
{Eapla,b=1,2,..., M + N}. We introduce the gradation index [ ]:

[a]:{o if a<M

1 if M<a<M+N and [Eap] = [a] +[b]. (2.1)

The bilinear graded commutator associated with gl(M|N) is defined as follows:

L1 {gl(MlN) ® gl(M|N) — gl(M|N)

(s Ecd) = Sepad — (— DaBDekidDg g 2.2)
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The super-Yangian Y (M|N) is a Z,-graded Hopf algebra generated by an infinite set of
elements T(Z';, a,b=1,2,...,M+N andn € Z-(. The T(fg are even if [a]+[b] = 0 (mod2)
and odd otherwise.

We introduce the generating function

M+N 0
T(u) = Z T (u)Ey, and T% () = Z Tehu™ (2.3)
a,b=1 n=0

with T(‘(’)’)’ = 8%, u a spectral parameter and E,;, the matrix with 1 at position (a, b) and 0
elsewhere.
The following R-matrix

P
Ruwy=11—- — ueC
u
satisfies the graded Yang—Baxter equation. The permutation operator P is defined by

Po=) (-DVE,; ® E; @4
iJ

and the tensor product is chosen graded,

(Eij ® Ent) - (Eyp ® Epg) = (=)W E R @ EyE,,. (2.5
The defining relations in Y (M |N) can be written as follows,
Ru —v)T1(u)T2(v) = To(v)T1 () R(u — v) (2.6)
with
M+N M+N
Tiw) =Y TWEs®1 and T)= Y T*W)1Q Ew. (27
a,b=1 a,b=1

We can rewrite equation (2.6) as follows,

(— 1)[01(1a1+lbl)+lallbl

[T (u), T (v)} = (T )T (v) — TP ()T (u)) (2.8)

or equivalently

b °d b d
[T Ty} = 8T,

(m+n—1)

— (=1 (lal+[bD([c]+[d]) gad b

(m+n—1)
min —1
[cl([al+[b])+[allb] b pad b d
+(=1) o ¢ Z {T(Lr) T(cr,n+n717r) - T(in+n717r) T(c;) } (2.9)
r=1
where min stands for min(m, n).
The Hopf structure is given by

(T (u)) = 8* ST w)) = (T~ )™ (2.10)
M+N
AT ) =Y T & T (u). 2.11)

e=1

The super-Yangian Y (M|N) is a deformation of the enveloping algebra of a polynomial
algebra (restricted to its positive modes) based on g/(M|N), denoted by U(gl(M|N)[x]).
The parameter 7 can be recovered after rescaling the generators by an appropriate power of

. b -1 b
T — W T,
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2.2. Finite-dimensional irreducible representations of Y (M |N)

The finite-dimensional irreducible representations of Y (M|N) have been studied in [15]. We
recall here the main results, using a different basis for the positive roots (see [17] for details).

We introduce the subsets Ny,,y = [I, M + N] N Z,, N%“N = Npynv X Ny and the
integer £ = [%] The definition of the positive roots will be associated with the set

1<a<bs<M
M+1<a<b<M+N
+ _ 2 . . X X
®* = {(a,b) € N};,y  with either l<a<MandM+t+1<b<M+N[ (2.12)

M+1<a<M+Llandl <b<<M

Definition 2.1. Let V be an irreducible Y (M |N)-module. A nonzero element vfr\ € Viscalled
a highest weight vector if

TN =0 Y(a,b)e ®, n>0

(n) "+

Tt = )Wt a=1,....M+N n>0 A"eC.

(n) "+

(2.13)

An irreducible module is called a highest weight module if it admits a highest weight
vector. We define

Aw) = A (u), 2a(u), ..., Apen (1)) (2.14)
with Ag(u) = 1+, o AMu~" and call A(u) a highest weight of V.

Theorem 2.2. Every finite-dimensional irreducible Y (M |N)-module V contains a unique (up
to scalar multiples) highest weight vector v2.

Corresponding to each A(u) of the form (2.14), there exists a unique irreducible highest
weight Y (M|N)-module V (A) with highest weight A (u).

Theorem 2.3. The irreducible highest weight Y (M| N)-module V (A) is finite dimensional if
and only if its highest weight A (u) satisfies the following conditions,
Aa(u) — P(u+1)
hast (@) Pa(u)

1<a<N+M a#M

p (2.15)
Av@) — Pyu)
Avwi(w) Py (u)
where, m, being the degree of P,,
Pa(”)=l_[(u—)/a(i)) I1<a<N+M and a+#M y;i)e((j
. (2.16)

~ mu 7() my 0 ' .
Py(u) =n(l—%> and Py (u) :n(l_%> r(l),f(') cC.

i=1 i=1
Among the finite-dimensional highest weight representations, there is a class of particular

interest:

Definition 2.4 (Evaluation representations). An evaluation representation evy, is a morphism
Sfromthe super-YangianY (M |N) to a highest weight irreducible representation i, of gl (M|N).
The morphism is given by

evr, (T () = 8" + 7, (E")u™" Ya,be{l,...,M+N) (2.17)
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that is
evn, (T§)) = 8% evs, (T4)) = mu(E°) evr, (T)) =0 for r>1 (2.18)
where £ are the standard gl(M|N) generators.
The highest weight w(u) = (1 (u), . .., uap+n () of the representation evy, is given by
o) =1+ pau™? Yae{l,...,M+N} (2.19)
where L = (U1, ..., Wyp+N) 1S the highest weight of 7,,.

Any finite-dimensional irreducible representation can be obtained through the tensor
products? of such evaluation representations [15]:

Definition 2.5 (Tensor product of evaluation representations). Let {evm}l Lo be a

set of evaluation representations. The tensor product of these s representations evy =
eV, ®- - -®evy, isamorphismfromY (M|N) to the tensor product of gl(M|N) representations
T = Q;m; given by

or(T) = @ (evn (Ti) @evn, (T0h) @+ @ evn, (13,)) (2.20)

ri4ra e, =r

where there is an implicit summation on the indices iy, iz, ...,is—1 =1,..., M + N.
It satisfies

vi (T§) #0 ifand only if r <s. 2.21)

2.3. Truncated super-Yangians

We will proceed as in [8]: we introduce 7, = U ({ o ),n > p}) and the left ideal
Z, = Y(M|N) - 7, generated by 7,. We then define the coset (truncation of the super-
Yangian at order p),

Y,(M|N) = Y (M|N)/Z,. (2.22)

Property 2.6. The truncated super-Yangian Y,(M|N) is a superalgebra (Np € Z).
Proof. As in [8] the Lie superalgebra structure of Y, (M|N) can be proved by showing that
1, is a two-sided ideal. We first show that

[Y(MIN),T,] CY(MIN) -1, =1,. (2.23)

Relation (2 9) shows that [ ,i,’ , T"l] (for n > p) is the sum of two terms, the first being in
Y(M|N) - 7,, the second belonging to 7,, - Y (M|N). Focusing on the latter, one rewrites it as

n—1 r—1
l k/ 1K+ D+ kl kl
(Trl m+n—1—r + (_1) ! ! ! Z (T”Tm+n 2—s Tm+n 2— sT ))
r=0 s=0

n—1

— ll [T+ D+ ]
Z T m+n 1— T (_1)

X Z(“ —s—1) (T”T,,’;{m R ST“> (2.24)

2 Note however that one sometimes has to make a quotient to get an irreducible representation from these tensor
products.
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where p stands for min(m, n). In (2.24), the first sum belongs to Z,, while the last sum
belongs to 7, - Y(M|N), with a summation which has one term less than the previous one;
we can thus proceed recursively in a finite number of steps. The final result is an element of
Y(M|N) - 7). In the same way, one can show that

[Y(M|N),T,] C 1, -Y(M|N) (2.25)
sothatZ, =Y(M|N) -1, =T, - Y(MI|N). O

Note that A is not a morphism of this superalgebra (for the structure induced by Y (M|N)),
i.e. Y, (M|N) has no natural Hopf structure.

Finally, we remark that each Y, (M|N) is a deformation of a truncated polynomial algebra
based on g/ (M|N). By truncated polynomial algebra we mean the quotient of a usual g/ (M |N)
polynomial algebra (of generators T',{)) by the relations T(’,f) = 0 forn > p. The construction
is the same as for the full super-Yangian.

2.4. Poisson super-Yangians

In the following we will deal with classical super-Yangians, where the commutator is replaced
by a Z,-graded Poisson bracket (PB). It corresponds to the usual classical limit of quantum
groups. One sets
M+N
L) =Y (=D"'T ) ® Ep
a,b=1

P
Rip(u) = 1 @ 1 +hirpa(u) + o(h) with rp(u) = —2
u

[.}=n{,}+o).

Relation (2.6) is then expanded as a series in /. Since in a classical super-Yangian we have
T Ted = (—1) MDD Ted Tab | we obtain
1
(T @), T (0)} = —— (=DINFDAACT T ) T (v) — T (0) T (w)) (2.26)
u—v

which leads to

{Tab Tcd} — ach(ad

([al+[bD([c]+[dD b
(m)* *(n) m+n—1) — (=D ¢ 8UdT(L

m+n—1)

min(m,n)—1

[X([al+b])+allb] cbrpad o
+(=D > (18T I

m+n—1—r) — L (m+n—1-r)

ad
T29). 2.27)
r=l1

In classical super-Yangians, all the algebraic properties described above still apply.

3. W(gl(Mp|Np), (M + N)gl(p)) superalgebras

For simplicity we note W,(M|N) = W(gl(Mp|Np), (M + N)gl(p)).

3.1. Definition of W(G, H) superalgebras and Dirac brackets

W(G, H) (super)algebras can be constructed as Hamiltonian reduction on a Lie (super)algebra
G, with Poisson brackets {., .}. The construction is done as follows.

We start with an s/(2) embedding in G, this embedding being defined as the principal
embedding in a regular sub(super)algebra™ C G. We recall that the principal s/(2) embedding
of an algebra H is given by e, = ), e;, where e, is the positive root generator of s/(2), and
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e; are the simple root generators of H. If H is a superalgebra, the principal s/(2) embedding
is defined as the principal embedding of its bosonic part.

Once the s/(2) embedding in G is fixed (i.e. when H C G is given), let (e, h) be its
generators, one decomposes G into s/(2) representations. This amounts to taking a G-basis of
the form Jj’fm, —j <m < j,and i labelling the multiplicities, with

lex. T}, ] = atjmd} s [h. ), ] =mlJ], with o;, € C. (3.1)

s Yjim

We take ex = J R gqandh=J 10,0' Then, one introduces a set of second-class constraints (in
Dirac terminology):

Ji =898 18, for m < j,Vj,Vi. (3.2)

Jjm

This amounts to setting to zero all the generators but the s/(2) highest weight ones (which are
left free), and e_ which is set to 1.
The W(G, H) (super)algebra is defined as the enveloping algebra generated by the sl(2)
highest weight generators, equipped with the Dirac brackets associated with constraints (3.2).
We recall that the Dirac brackets can be calculated as follows. If ® = {¢y}qc; denotes
the set of all the above constraints, we have

Aup = {¢a, ¢p) is invertible: Z Agy AP = 5P where A% = (A1),4. (3.3)
yel
The Dirac brackets are constructed as
X, VLo~ (X, Y} = Y X, ¢udA (g, Y} VXY (3.4)
a,pel

where the symbol ~ means that one has to apply the constraints on the right-hand side once
the PB have been computed.
Dirac brackets are designed in such a way that

{A, 0o} =0 Ya el VA (3.5)

Note that, owing to its construction, the Dirac bracket fulfils the conditions required for PB as
soon as the original PB does. In other words, it is graded antisymmetric, and obeys the graded
Leibniz rule and the graded Jacobi identity, where the Z,-grade [.] is that introduced in (2.1):

{A, B}, = (=DM B A}, (3.6)
{A, BC}, = {A, B}.C + (—=DMIBIB{A, C), (3.7)
{A,{B, C}.}s = {{A, B}, Cu + (—=DMIBYB (A, C) ). (3.8)

These identities can be shown by a simple (although a bit lengthy) calculation.

3.2. Soldering procedure

The soldering procedure is an alternative way to compute the PB of W(G, H) algebras.
We apply it to the superalgebra g/(Mp|Np) with generators £/,',0 < j < p—1,—j <
m< j,a,b=1,...,M + N (see appendix A). Let M;Z’ be the (M + N) square matrices
representing the generators & [{,;" in the fundamental representation of g/(Mp|Np). Denoting
by J j"”’: the dual basis, we introduce the matrix

M+N p—1 j

I=Y "> > seml. 3.9)

a.b=1 j=0 m=—j
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Let us consider an infinitesimal transformation of parameters A%2 . For convenience, we
Jm
. __ yab pgim
define the matrix A = A%, M,

8:J = (8,740 M2 = A, 1 = {str(A]), J} (3.10)
= st (M) {5l Tany MUy (3.11)

where summation over repeated indices is assumed, [. , .] denotes the commutator of Z,-graded
matrices, and {. , .} the PB.
We ask J to be of the form

M+N p—1

Do =€+ Y WMy (3.12)

a,b=1 j=0

where €_ is the s/(2) negative root generator (see appendix Al). This amounts to constraining
the generators Jj"mb to obey the following second-class constraints:

J =8, 184108 for —j<m<j VYj Va,b. (3.13)

jm

We look for transformations leaving J|. ;. with the same form:
52Tlgp) = [ Jlg.p] = (W) M. (3.14)

The parameters )»"’;Zq are constrained and only (M + N)? p of them are free. Equation (3.14)
leads to
p—1 k M+N
M= D (MWK L vl jm) — WA (v v k1 jm))
k,r=01=—k e=1

for —j<m<j—1 (3.15)
p—1 k M+N
W = 3" 3N (MW L rr| ) — WA e k.11 jj)) (3.16)

k,r=0I1=—k e=1

where (-|-) are real numbers defined in appendix Al. All the coefficients A;; can be expressed
in terms of the parameters A, _; and the generators W, after a straightforward but tedious use
of equations (3.15).

On the other hand, we have

S WP = al st (M ME) (Wil Wit (3.17)
With appendix A of [8] we obtain

tr (MJEMY) = 878% 78 pc8ea (=D (= D*(2k) 1 (k1) ptk 3.18

str (M3 ML) = redea DD QIR (5, ) BB
We define

Tab _ 1\ a2 (PR a

Ay = (=17 (2k)! (k) <2k+1 ek (3.19)
Equation (3.17) becomes

p—1 M+N
W =" (=DM {wit wey (3.20)

k=0 c,d=1
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If we now compare (3.16) and (3.20), the lfb being independent of one another, we get
{Wgd, web} as a polynomial in the Ws.

3.3. Calculation of Poisson brackets

We now give two examples of PB calculations which will be needed in the following.

3.3.1. Calculation of {Wg", W'}, For j = 0 equation (3.16) becomes

p—1
SWE =3 (M WPk, —k: k. k10, 0) — WE€ash, (k. ks k. —k]0,0))
k=0
122 .
— _ Z (j\zewkeb _ (_1)([a]+[€])([e]+[b]))\zb W]ge) ) (3.21)
P>
We rewrite equation (3.20) as
p—1 M+N
SLWEb = Z (=DM W wgh)
k=0 c.d=1
p—1 M+N
_ (=)l (— 1) el elelaDyde fyyab yyed ) (3.22)
k=0 c.d=1

Comparing the X;jc—components of both equations, we obtain
1
(_1)([a]+[b|)([c]+[d])+[d] {ng’ W/fd} — ; ((SbC(_1)([al+ldl)(ldl+lcl) Wkad _ 5”dW,fb) . (3.23)
If we define W{* = (—1)“!Wg, Vk, equation (3.23) becomes
N A | PRI ) Al
{ng’ W;d} _ ; (5cbwzd — 5ad (—1)(akbD(el+{d) Wzb) _ (3.24)

3.3.2. Calculation of{W{”’, Wj‘fd}. Using the same procedure with j = 1 we get

8}\Wlab — (_1)1+[dl+([a]+[bl)([C]+[d]) {Wflb, erd}

3 2 k) 3 i (329
8, Wb = k1, Wil 4+ ———— [ons W] =, Wel$?
‘ p(phl)é 2%k +1 p(phl)é,; *
3 ”Z“ 1 2”:
+ (o1, Wae1—x s, Wi]?
2 _
p(p D k=0 2k +1 n>k+1
3 ”i |
- —————[[[Ans W] —s W11, Wil
2 _
p(p>—1) om0 m2k +1)
where

M+N
e, W18 = > (REW £ WeeR).

e=1
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We use Wzb = (-l Wk“b and identify the lfc-components on both sides of the equation,

s b e r+D(P* =T +D?) e (e ) < o
(WP, wel) = T (8P Wad, — (1o erriad sad ireb

p(p*> =1
3

,
+ Z {5b0(_1)lelWZvecik _ (_1)(lal+lbl)(ICI+ldl)5ad(_1)lelWﬁe_k‘fvib
k=1
+ ( _ 1)[b]([6‘]+[d])+[c][d] (W?ik Wzb _ Wzd W;Iik)}
r—1
r—k i P X o~ A
+> T {te (—Dylehaerired, — (—1yallbbiiebtd gad (_ylel ee yireb

+(— l)lbl([Cl+ldl)+[Clldl (Wzd Wiék _ Wfikwib)}
p—1 1
_ acb 1 [el+[ f] WaeWef Wfil
r>,§>0 m(2k + 1) { ( ) k m—k—1""r—m
— (_1)([11|+[b])([€|+[dl)5ad(_1)[6‘|+[f|Wﬁe_m anf—k—l WI{b + (_1)[b]([CI+[dI)+[C|[d]
(VW) — DMV ),
+ WZld—k—l (_)[e](Wﬁe—m Wib) - (_1)[61(W26 Witim)wzlb—k—l

FWE W, Wil o) = D W W5, ) W) (3.26)
where summation overe, f,g = 1,..., M + N is assumed. We recall that
W = (—=nlwsb. (3.27)

The W-basis is the one we will work on, we shall therefore omit the”on W from now on.

34. W(sI(Mp|Np), (M + N)sl(p)) superalgebras

The s1(2) principal embedding in (M + N)gl(p) is indeed an embedding in (M + N)sl(p),
i.e. it commutes with the (M + N)gl(1) generators defined by gl(p) = sl(p) & gl(1).
Moreover, considering these (M + N)gl/(1) subalgebras in g/(Mp|Np) which commutes
with (M + N)sl(p), it is easy to see that none of its generators is affected by constraints
(3.13), since they are highest weights. Furthermore, these g/(1) generators, while they do not
commute with all the constraints, weakly commute with them. By weakly, we mean after
using the constraints (once the PB have been computed). Thus, their Dirac brackets coincide
with their original PB. This implies that these g/(1) generators still form g/(1) subalgebras in
the YW-superalgebra.

In addition, the diagonal g/(1) of these (M + N)gl(1) subalgebras, which corresponds
to the decomposition gl(Mp|Np) = sl(Mp|Np) @ gl(1), is central for the original PB.
Therefore, this g/(1) generator is still central for the Dirac brackets. In other words,
one gets

Wp(M|N) = W(gl(Mp|Np), (M + N)gl(p))
= W(l(Mp|Np), (M + N)sl(p))
= WIsl(Mp|Np) @ gl(1), (M + N)sl(p)]
=UWIsI(Mp|Np), (M + N)sl(p)] & gl(1)).
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4. Truncated super-Yangians and VV-superalgebras
4.1. W,(M|N) as a deformation of a truncated polynomial algebra

Property 4.1. The W,(M|N) superalgebra is a deformation of the truncated polynomial
superalgebra gl(M|N),.

Proof. To see that the WW,(M|N) is a deformation of a truncated polynomial algebra based on
gl(M|N), we modify the constraints to

N p—1
1 ,
— b Jm
J=re + DO uemly 4.1
a,b=1 j=00<m<j

These constraints are equivalent to the previous ones as soon as /i # 0 (they correspond to
a rescaling J ]”n’j —n"J j“,fl). With these new constraints, the equations associated with the
soldering procedure read

p—1  k M+N
M =R (MWK, vl jm) — WD (v s k1 jm))
k,r=01=—k e=1
forr —j<m<j—1 4.2)
p—1 k M+N
W =Y D Y MWk Lror ) = WA ri k1)) -
k,r=0I1l=—k e=1

This implies that the parameter k‘j’;n behaves as 7/*". Then, the Poisson brackets of the W
generators take the form

{W]qb, W[Ld} — abcwqd

N e — (_1)([0]+[b])([c]+[d])8ad W;-?-K _ hP]gde(W) (43)

where P¢%d (W), polynomial in the Ws, has only positive (or null) powers of /. This clearly
shows that the W, (M|N) superalgebra is a deformation of the superalgebra generated by
W;’” = Jj"j” and with defining (undeformed) Poisson brackets:

{web wit}) = 8" wid, — (—1){lerPhiertdh sadyyeh, if j+€<p (4.4)

-0 if j+e>p (4.5)

One recognizes in this superalgebra a (enveloping) polynomial algebra based on gl(M|N)
quotiented by the relations W;’b = 01if j > p. In other words, this algebra is nothing but a
truncated polynomial algebra, and the VV-superalgebra is a deformation of it. O

Property 4.2. There exist two sets of generators {in’b}jzow in W,(M|N) such that,
Ya,b,c,d=1,..., M+ N, '

. T Y7 C c g7ad a c 77cb
V] > 1 {inab, iWid} =5 bin‘H _ (_1)([ J+[PD ([ HMDSWIinH
cl(lal+[bD)+[allb F7chb £yy7ad +yy7¢b yx7ad
+(_1)[ 1({al+[bD+all ](WO Wi _ Wi WO ) (46)
. = T ¢ = ad a ¢ =,cb
Vji>0 [Web, £ Wed) = s+ Wod — (—1)@arbDeltd) gad et @7

The generators iW;‘b are polynomials of degree (j + 1) in the original generators W;‘b and
are recursively defined by

Wb = *WEb = ~ W = pwe (4.38)
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M+N

2
_ —1
syer — PP 1 - Dyyen 4 7” (P Z( W web 4.9)
andfor j > 1,
Jj+l ] M+N
W=D, 2L tel 3L (CHREWIWLE W .10
n=1|5|=j+1—n i yein =1

for some numbers ia?” determined by (4.6). The summation on § is understood as a

summation on nposizil/e (or null) integers (s, . .., s,) = S such that |5 Z:l:l si=j+1—n.
The subsets {iW]qb}jZO ool form two bases of W,(M|N), the other generators
{iW;’b }j>p being polynomials in the basis elements.

Proof. As in [8] relations (4.6) and (4.7) can be proved by recursion on j. Indeed, a direct
calculation shows that (4.7) is obeyed by (4.10) for any numbers a” J Then, (4.6) uniquely
determine these numbers, up to the choice made in (4.9). O

Remark 1. Relations (4.6) allow us to compute recursively all the PB of W,(M|N) but
{iWJQ, W}, where

M+N

= Ziw_;’a, 4.11)
In the following, we will assume that
Fwiswll=0 vk (4.12)

Note that (4.6) and (4.7) prove that (4.12) is valid for j = 0, 1 and Vk. Let us also remark
that, since W, (M|N) is a deformation of g/(M|N) (see below), the lemma B.1 ensures that
{iWJQ, W7} is central in W, (M|N).

The first and the last coefficients that appear in definition (4.10) can be computed by
recursion (Vj > 0):

Li (1)) (j1)? (;}:ﬁ) (4.13)

"oty = ( Pt 1) (4.14)

Yol = (’; o ) (@.15)

The non-vanishing coefficients (4.13) show that the generators iV_V‘.’b for j < p are indeed

+ IIWIJb

independent, since these generators write j[V_V]‘?b = + lower where lower is a

polynomial in Wy with k < j.

Corollary 4.3. The change of generators between {*W;’b }j=1.... and {’ Wj‘.’b}jzl _is given by
Jj+l1 M+N
Wit = Z< DU Z FW L F b (i, (4.16)

|s|=j+1—niy,....in_1=1
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Proof. The procedure is the same as in [8]: a direct calculation shows that indeed expression
(4.16) satisfies (4.6), (4.7), and that (4.16) is valid for W@, O

Corollary 4.4. The basis {~W¢"

B L J }j=1,...,p71
{*W;’b} o1 all the +Wj‘?b generators (j = p) are non-vanishing.

is such that ’W?b = 0for j > p. In the basis

Proof. (4.15) shows that +W;‘b # 0 for j > p. Now, using (4.6) for j = p, with the form
(4.10), one gets a” = (—1)"A with A = 0 or 1. Then, (4.14) shows that A = 0 for ’ng.
Finally, (4.6) ensures that ~W¢” = 0, for j > p, as soon as ~Wa" = 0. O

4.2. Wy(M|N) and Y,(M|N)

We have shown that both W, (M|N) and Y, (M|N) are deformations of a truncated polynomial
superalgebra based on g/(M|N). It remains to show that these deformations coincide.

Theorem 4.5. The W,(M|N) superalgebra is the truncated super-Yangian Y,(M|N).

Proof. First, the map ’W;’b — Tj"f’l, VO < j < p, between basis vectors shows that
W,(M|N)andY,(M|N) are isomorphic as vector spaces (and indeed coincide with gl (M |N)).
Since they are both deformations of g/(M|N),, we can introduce " and @7, the cochains
associated with the deformation corresponding to W, (M|N) and Y, (M|N) respectively.

Now, remark that the two superalgebras have identical (in fact undeformed) PB on the
couples (’ wab, - W;f‘l ) which proves that the cochains ¢" and ¢” coincide (in fact vanish)
on these points. It is also the case for the couples (~ WJQ, ~WY), due to formula (2.27) and
assumption (4.12).

Moreover, property 4.2 shows that the cochains ¢" and ¢” coincide on the couples
(_ Wf‘b, _V_V]?d). Since ¢" and ¢ are cocycles, this is enough (using lemma B.1) to prove
that they are identical. 0

4.3. Representations of W,(M|N)

Theorem 4.6.  Any finite-dimensional irreducible representation of the W,(M|N)
superalgebra is highest weight. It has a unique (up to scalar multiplication) highest weight
vector.

Proof. An irreducible representation 7 of the W,(M|N) superalgebra can be lifted to a

representation of the whole super-Yangian by setting n(T("r")) = 0 for r > n. It is then
obviously irreducible for the super-Yangian, and thus is highest weight by theorem 2.2. [

Theorem 4.7 (Finite dimensional irreducible representations of (W,(M|N)). Any finite-
dimensional irreducible representation of the W,(M|N) superalgebra is isomorphic to an
evaluation representation or to the subquotient of tensor product of at most p evaluation
representations.

Proof. By evaluation representations for W,(M|N) superalgebra, we mean definitions 2.4
and 2.5 with the change 7% — Wffl (i.e. the evaluation representations of the truncated
super-Yangian). Property (2.21) clearly shows that the (subquotient of ) tensor product of n
evaluation representations is a representation of the truncated super-Yangian as soonas n < p.
It also shows that if it is irreducible for the super-Yangian, then it is also irreducible for the
truncated super-Yangian and that they are finite dimensional.
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Now conversely, an irreducible representation m of the WW,(M|N) superalgebra can be
lifted to a representation of the whole super-Yangian by setting (T(’r")) =0forr > n. Itis
then obviously irreducible for the super-Yangian, and thus is isomorphic to the (irreducible
subquotient of ) tensor product of evaluation representations. O

5. Twisted super-Yangians

Twisted super-Yangian have been introduced in [17]. We recall here the main results.
We start with the super-Yangian Y (M|2n), and introduce the transposition ¢ on matrices,

Ewp= D00, Ey - with {Z _ fMJr:z;i 1—a ig; Al/liizi]‘]/\l/l +2n
(5.1)

where the 6, are given by

0, =1 for 1<as<M

Oazsg(%—a) for M+1<a<M+2n. (5.2)
Note that we have the relations

(—=Dp,6, =1 and [a] = [a] Va. (5.3)
Then, we define on Y (M |2n)

T[Tl =Y t[T"W]Esp =) _ T*(—u)E, (5.4)

a,b a,b

which for the super-Yangian generators reads
T(T W) = (=D PH0,6, 7% (—u) (5.5)

where 7 is an algebra automorphism of Y (M |2n).
One defines in Y (M |2n)

M+N M+N
Sw) =Tw)t[Tw)] = Z SP(U)Eq =1+ Z Zu*"sggEab (5.6)
a,b=1 a,b=1 n>0
M+N n B
Sh =" (=)= g, T TV 5.7
c=1 p=0
M+N B
$w) =Y (=DIICEDG.0, T )T (—u). (5.8)

c=1

Definition 5.1. S(u) defines a subalgebra of the super-Yangian, the twisted super-Yangian
Y (M|2n)*. It obeys the following relation,

Ria(u — v)S1 ()R} (u +v)S2(v) = (V) R}, (u +v)Si () Riz(u —v)  (5.9)
where R(x) is the super-Yangian R-matrix,
1
R(x)=1+-0 = R"(—x) with Q= P" (5.10)
X

and ty is the transposition (5.1) in the first auxiliary space.
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Introducing
M+N
T(S(u)) = Z S (—u)E!, (5.11)
a,b=1
one obtains
T(8 W) = (=DIHD,6,8" (—u). (5.12)

Then, using expression (5.8) and the commutation relations of the super-Yangian, one can
show the symmetry relation

0
T(S(u)) = S(u) + i(S(u) — S(—u)). (5.13)

Note that relation (5.9) is equivalent to the following commutator,

1 1
[S1(), $2(V)] = ——(P2S1(w)S2(v) — S2(v)S1 () Pr2) — ——(S1 () Q125:(v)
u—v u+v

1
— S ) Q1281 (u)) + 1427(1’1251 (1) Q1282 (v) — S2(v) Q1281 (1) Pr2)

— 2
(5.14)
and also to
(—1)@al+bDIe]
[$° @), 5 (0)} = —————(=D!IST@)$* () = SV (V)5 (W)
(_1)([al+lbl)lﬂl _ _ _ -
— (= D"19,6:5" @) S () — (= 1)"1636,5 () §™ )
u-+v
(_1)([al+lbl)lﬂl _ _ _ _
— 7 (DO, (ST @) " ) = 57 @) S ). (5.15)

As for Y(M|N), one can show that Y (M |2n)* is a deformation of U (osp(M |2n)[x]).

5.1. Finite-dimensional irreducible representations of twisted super-Yangians

The finite-dimensional irreducible representations of twisted super- Yangians have been studied
in [17]. We recall here the main results. As for super-Yangians, they rely on the evaluation
morphism:
Property 5.2. The following map defines an algebra inclusion

Y(M|2n)* — Ulosp(M|2n)]

1 (5.16)
Sw) — Fu) =1+ T F
u+ 3
where the osp(M|2n) generators J* have been gathered in the matrix
M+N
F=Y J"Fy with  Fu, = Eqp, — (—D)!W®Dg 6, E; (5.17)
a,b=1

Using the above inclusion, one constructs from any finite-dimensional irreducible
representation of osp(M|2n), a finite-dimensional irreducible representation of Y (M|2n)™.

Theorem 5.3. Every finite-dimensional irreducible Y (M |2n)*-module contains a unique (up
to scalar multiples) highest weight vector.
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A sufficient condition for the existence of irreducible finite-dimensional representations
has been given in [17]. It corresponds to an explicit construction of the representation
as a tensor product of Y(M|N) evaluation representations and possibly one osp(M|2n)
representation (using the evaluation morphism). These sufficient conditions were conjectured
to be necessary; we will assume this conjecture in the following.

5.2. Classical twisted super-Yangians

As for super-Yangians, one can introduce a classical (Poisson bracket) version of twisted
super-Yangians. The calculation is the same as in section 2.4: one writes R(u — v) =
I+Ar(u—v), R'(u+v) =1+nhr'(u+v), and considers the terms in 7z. One obtains
{S1(u), $2(v)} = ria(u — v)S1 (W) $2(v) — $2(v) Si (W)ri2(u — v)

+ S, (U +v)S1 () — Sy (u)r),(u +v)S2(v). (5.18)
In components, this reads

n—1

S, St = Z[PIZS(S)IS(r+q—S—l)2 — Str+g—s—125)1 P12
s=0

+ (=D (861 Q128 (r+g-s5-12 — Sr4g—s—1)201285)1)]
with u = min(g, p).
Let us remark that the symmetry relation (5.13), in its classical form, takes the form
T(S@w)) = S(—u) (5.19)

because the 7% (1) generators are now Z,-commuting.

6. Folded YV-superalgebras revisited

It is well known that the gl (M |N) superalgebra can be folded (using an outer automorphism)
into an orthosymplectic one (see e.g. [20]). In the same way, folded W-superalgebras have been
defined? in [18], and shown to be W-superalgebras based on orthosymplectic superalgebras.

We present here a different proof of this property, adapted to our purpose, and generalized
to the case of the automorphisms presented in section 5. For such a purpose, we use the Dirac
bracket definition introduced in section 3.1.

6.1. Automorphism of gl(Mp|2np) and W,(M|N)
As for the super-Yangian, one introduces an automorphism of g/(Mp|2np) defined by

. (ané) _ (_1)j+1(_l)lal(lbl+1)909b_]fj (6.1)
where 0 is defined in (5.2), and @ is given in (5.1).

To prove that 7 is an automorphism of gl(Mp|2np), we need the following property of
the Clebsch—Gordan coefficient, which was proved in [8]. Note that we need this property
only for the algebra g/(p), because of the decomposition gl(Mp|2np) ~ gl(M|2n) ® gl(p)
used here (see appendix A).

Property 6.1. The Clebsch-Gordan-like coefficients obey the rule
(jomst,qlr,s) = (=D (2, q; j,mlr, s). (6.2)

3 Strictly speaking, it is the folding of “affine’ JW-superalgebras that has been defined in [18], but the folding of finite
W-superalgebras can be defined by the same procedure.
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Note that in the above formula, it is not the Zy-grades [ j1, [t] or [r] that are used, but really
J.t and r themselves.

With this property, it is a simple matter of calculation to show that t defined in (6.1) is an
automorphism of gl(Mp|2np).
6.2. Folding gl(Mp|2np) and W,(M|2n)

6.2.1. gl(Mp|2np). One considers the subalgebra Ker(I—7) in gl (M p|2np). Itis generated
by the combinations

K = Jon+ (J50) = Jjn — (=D (=DlIPDgegh /70 6.3)
which obey the symmetry relation
T (K§n) = K$p ie. K9 = (=1 (—nllibihgegh gha (6.4)

Using the PB

Jjtk r

{qu”b1’ chg} — Z Z <]’ m; k, E|r, S)(abCJran _ (_1)([a|+[b])([c|+[d|) (_1)j+k+r8ad-]rcsb)

r=|j—k| s=—r

one can compute the commutation relations

j+k r
[k Ky = " Y (omik. tlr.s) (abCKf;’ — (=1)7696" (—1)lalbkD) sac g b
r=|j—k| s=—r

j+k+r al+[b])([c]+[d ad yrch jpapnb al([b bd grca
— (= 1)/ (el ED el |>[5 K — (—1)79%9" (— 1)lallblD g K”])_

After a rescaling of K;‘,Z, one recognizes the superalgebra osp(Mp|2np).

Looking at the decomposition of the fundamental of g/(Mp|2np) with respect to the
principal embedding of s/(2) in (M +2n).sl(p) (see [18, 19] for the technique used here) one
shows that the subalgebra (M +2n).sl(p), generated by the J j"n‘i s, is folded into an (m+n).sl(p)
(respectively (m +n).sl(p) ® so(p)) when M = 2m (respectively M = 2m + 1).

In the following, we will denote this subalgebra by [M.sl(p)]® @ n.sl(p).

6.2.2. W,(M|2n). We are now dealing with the enveloping algebra of gl(Mp|2np) that we
denote by U[gl(Mp|2np)] = U(Mp|2np). One introduces the coset

UMp|2np)* = U(Mp|2np)/K where K =U(Mp|2np)- L with £ spanned by
Jor—t (i) Va,b,j.m

W, (M2n)" = Wy (M |2n)/TJ where J = W,(M|2n) -1  with 7 spanned by
Wi~ (Wi") Vb,

We have the property

Property 6.2. t is an automorphism of U(M p|2np) provided with the Dirac brackets:

e (i Ji).) = e (3m) e Vi), ©3)
Hence, T is also an automorphism of W,(M|2n).

Proof. It is obvious that t is an automorphism of Poisson brackets on U/ (M p|2np). Moreover,
due to the form of the constraints (3.13), t acts as a relabelling (up to a sign) of the constraints,

T(Qy) = €x Yo where o =71(a) and €y =€, = %1 (6.6)
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which shows that 7(®) = &. We also have

T(Agp) = €w€p Agp. 6.7)
This implies that
(A, @u} A% (@5, BY) = {T(A). 0o} A (g, 7(B)) = (1(A). 0a) A (5. T(B)).  (6.8)

This shows that this automorphism is compatible with the set of constraints ® and thus 7 is
an automorphism of the Dirac brackets. 0

Corollary 6.3. The Dirac brackets provide W, (M |2n)* with an algebraic structure.

Proof. We define on W, (M |2n)* a bracket which is just the previous Dirac bracket restricted
to this coset. Since W, (M |2n)* is generated by elements of the form W + t(W), we have

{(W+z(W), W+ t(W)} = {W, W+ (W), t(W)} + {T(W), Wh +{W, T(W)),
={W, W+ {z(W), W+ (W, Wh +{t(W), W}).

Indeed we have

Property 6.4. The W, (M |2n)* superalgebra is the W[osp(Mp|2np), [M.sl(p)]" ® n.sl(p)]
superalgebra.

Above, the [M .sl(p)]* (respectively n.sl(p)) subalgebra is understood as the subalgebra
of the orthogonal (respectively symplectic) algebra in osp(Mp|2np).

Proof. On the coset, we have J]”an = r(J]qfl) = ZK?,Z. We introduce on U (Mp|2np)

2D@y = pu — T(¢a) 280y = Qo + T(Pa). (6.9)

Since these generators satisfy Dy, = —1(Dg,) and S¢, = 1(S¢,) and are in g/(Mp|2np),
we have

{S@a. Do} € T ie. {Sgu.Dggl=0 on W,(M]2n)".  (6.10)

Similarly, we define

DAyg ={D¢a, Dyp} SAop = {S¢a, Spp} (6.11)
which obey the properties

DAy = €eyepg DAyp = —€ DAyg = —€g DAyp (6.12)

SAup = €x€pSAyp =€ SAyp = €pSAup (6.13)

Agp = SAgp+ DA on W, (M|2n)*. (6.14)

We will say that a matrix is r-antisymmetric when it satisfies a relation such as (6.12), and
T-symmetric when it obeys (6.13). T-antisymmetric matrices are orthogonal to T-symmetric
ones,

DA -SA=0 since
(DA - SA)ap =Y DAuySAyg =Y DAgySAyg=—> DAuySAyp
Y 4 Y

where S A is the matrix of constraints of osp(Mp|2np) reduced with respect to [M .sI(p)]* @
n.sl(p). Thus, it is invertible and the associated Dirac brackets define the superalgebra
W(osp(Mp|2np), [M .sl(p)]* & n.sl(p)). It remains to show that, on W,(M|2n)*, the
previously defined Dirac brackets coincide with the latter Dirac brackets.
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For that purpose, we use the form A = Ay(I+ Z), given in [8], where Ay is an invertible
T-symmetric matrix and A is nilpotent (of finite order r). Introducing the r-symmetrized and
antisymmetrized part of A, one deduces

ATl = Ayt Z(—l)”(sz + DAY = A} Z(—l)“((sZ)” + (DAY = SA™' + DA™!
n=0 n=0
which shows that DA is also invertible.
On W, (M|2n)*, we have

(K. KGh ), = (K K} = Kl Doa + S@a} A { Dog + Sp. Ki3)) (6.15)
= {Kih). K5} = {Kim), Sea} 8% {Sep, K(i)) (6.16)
= {KGn Koo} = (K. Sga} (SA™ + DA {Spp, K} . (6.17)

From the t-antisymmetry of DA~!, we obtain
{., Seu}DA“P(S@p, .} = (., Spu ) DAY P{S@s, .} = —{., Spu }DAP{Sps, .} =0 (6.18)

which leads to the Dirac brackets,

ab cd ab cd ab cd
{KGn Ko, = K- Ko} — {KG). Sea} SA {Sp. KGH L (6.19)
These Dirac brackets are just those of the W(osp(Mp|2np), [M.sl(p)]® & n.sl(p))
superalgebra, by definition of SA. O

7. Folded YW-algebras as truncated twisted Yangians

7.1. Classical case

We start with the W, (M |2n) superalgebra in the Yangian basis. The Poisson brackets are

min(m,n)—1

{Tiny1, T2} = Z (PaTiry1 Tonen—ry2 — T2 Tinsn—r1 P12) (7.1)
r=0

with the convention 7{,,) = 0 form > p. The action of the automorphism 7, both for twisted
super-Yangians and folded W, (M |2n) superalgebras, reads
7:(T(m)) = (_1)mT(l;n)c (7.2)
However, from the twisted super-Yangian point of view, one selects the generators
S = Y (=D)'Ty T
r+s=m

while in the folded W-superalgebra case, one constrains the generators to 7(,,) = (—1)’”T(’m).
Although the procedures are different (and indeed lead to different generators), we have

Theorem 7.1. As an algebra, the W-superalgebra W (osp(Mp|2np), [M.sl(p)]* @ n.sl(p))
is isomorphic to the truncation (at level p) of the (classical) twisted super-Yangian 'Y (M |2n)*.
More precisely, we have the correspondences
Y,2m+ 112n)* <— Wlosp(mp + p|2np), (m +n).sl(p) ® so(p)]

Yp(2m|2n)Jr <«~—> Wlosp(2mp|2np), (m +n).sl(p)]. (7.3)

Proof. We prove this theorem by showing that the Dirac brackets of the folded VV-superalgebra
coincide with the Poisson brackets (5.18) with the truncation S,y = 0 form > p.
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We start with the W, (M |2n) superalgebra in the truncated super-Yangian basis,

n—1
{Tig)1, Tir2} = Z(PlzT(s)lT(qusfl)z — Trig—s—12T(s)1 P12) with T =0
;or0 s>p and w=min(g,r, p). (7.4)
In this basis, we define
2(0(5) = T(S) — (—1)ST(ZS) and 2K(S) = T(S) + (—1)ST(ZS). (7.5)
The folding (of the WW-superalgebra) corresponds to
Y =0 ie. K¢ = (—I)XK(’S). (7.6)
It is a simple matter of calculation to get
n—1
2{Kp1, K2} = Z[PlzK(mK(qusq)z — Krig—s—12K 51 P12
s=0
+ (=D (K51 Q12K (r+g-s—12 — K(r4g—s—1)2 012K (5)1)] (7.7)

that is to say
2{K(u), K2(v)} = [ri2(u — v), K1 (u)K2(v)]
+ Ky (0)ry(u +v)K () — Ky (u)ri,(u + v) K2 (v).
These PB are equivalent to relation (5.18) for S(u) = K (%) Constraint (7.6) is then rewritten

as t(S(—u)) = S(u). Thus, the folded W-superalgebra and the truncated twisted super-
Yangian are defined by the same relations. 0

7.2. Quantization and representations of YW-superalgebras

Now that folded WV-superalgebras have proved to be truncations of twisted super-Yangians at
classical level, there quantization is very simple. It can be identified with the truncated twisted
super-Yangian at quantum level,

Rix(u — v)S1(w) Ry (u +v)S2(v) = S (V)R e +v)S1 ()R —v)  (7.8)

Rp(x)=1- %Pu R,(x)=1- %le
p
S@) =Y u"Sm So =1L

m=0

with (7.9)

Using the representation classification of twisted super-Yangians given in [17], one can then
deduce the classification of irreducible finite-dimensional representations for truncated twisted
super-Yangians in the same way as done in [10] for ordinary twisted Yangians. For conciseness,
we will only sketch the results. In particular, one obtains the following theorems.

Theorem 7.2.  Any finite-dimensional irreducible representation of the W,(M|2n)*
superalgebra is highest weight.

Proof. Same proof as for theorem 4.6. U

Theorem 7.3.  Any finite-dimensional irreducible representation of the W,(M|2n)*
superalgebra is isomorphic to an evaluation representation, or to the (irreducible subquotient
of ) tensor product of at most [ p/2] evaluation representations of Y (M |2n), and possibly an
osp(M |2n) representation.
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Proof. Same proof as for twisted Yangians, see [10], using the results given in [17] for
Y(M|2n)*. Indeed, as for the gI(M|N) case, one needs to have S,y = O for r > p
to get a representation of the W-superalgebra. This constrains the number of evaluation
representations allowed to be tensorized (to get a representation). The difference with the
Y(M|N) case lies in the quadratic form S(u) = T (1)t (T (—u)), which lowers the maximum
number of terms in the tensor product. The occurrence of an osp(M|2n) representation is due
to the classification given in [17]. O

Reasoning as in [10], one can also obtain a condition on the weights of the representation.
We omit it here, due to the lack of place.

Remark 2. As for W-algebras based on so(M) and sp(2n), see [10] for more details, one
could think that JV-superalgebras based on osp(M|2n) are related to super-Yangians based on
osp(M |2n) instead of twisted super-Yangians. However, a simple counting (using the method
given in [19]) of the generators shows that it is the twisted super-Yangians that have to be
considered.

Appendix A. General settings on gl(M p| N p)

A.l. Clebsch—Gordan-like coefficients

We start with the g/ (M p|Np) superalgebra in its fundamental representation, and consider the
s1(2) principal embedding in (M + N)gl(p) = gl(p) ® --- D gl(p).

M+N
In the fundamental representation, one can view gl(Mp|Np) as gl(p) @ gl(M|N), so that

the generators of the s/(2) can be written as €1 g = e+ o @ 1 yn. The ey o are the generators
of the s/(2) algebra principal in gl(p) and verify [eg, ex] = Fes and [es, e—] = ep. The
generator 1 7,y is the identity generator in gl(M|N).

Under the adjoint action of the sI(2), gl(p) ® gl(M|N) can be decomposed into s/(2)
multiplets: M%) = M, ® E* witha,b=1,.... M+N; —j <m<j;0<j<p—L

The M/ are p x p matrices resulting from the decomposition of gl/(p) into si(2)
multiplets. Properties of the M, are gathered in appendix A of [8].

The E,p are (M + N) x (M + N) matrices with 1 at position (a, b). They are the graded
part of Mﬁ; which is even if a + b = 0 (mod 2) and odd otherwise.

Following appendix A of [8] we have

_JGAD —mm+ D)

(e, M) = > St (A1)
[e- Mj,] = Mj,, (A2)
[e0, My ] = mM5,,. (A.3)
The product law (in the fundamental representation) reads
j+l r
MM =8 NS " (jms Lonlr, )M (Ad)

r=|j—l| s=—r
which leads to the following commutation relations (valid in the abstract algebra):

j+[ r

[M%’l’ Ml = Z Z <8b"(j,m; 1, nlr, syM*

r=|j—l| s=—r

b d d - b
— (= 1)\laibDUeridd gad g e i, S)Mfs>-
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The scalar product is:

Njmitn = St (M - MiT) = (= D86 (=1)"8 ¢S 1. 0m; (A.5)

j.m;lin

for some non-vanishing coefficient 7, given in [8].
The ‘Clebsch—Gordan-like’ coefficients are then given by

(=D’

r

(jm,kﬂr, S) = Tr(MijkZMr,fsl (A6)

We recall that in (A.6) it is the usual trace operator which is involved, since we are in the g/ (p)
Lie algebra.

A.2. Structure constants

We consider a Lie superalgebra G in its fundamental representation, with homogeneous
generators 7,. As usual, we can define a gradation index [ ] such that

(a] 0 if 7, bosonic
al| = . . .
1 if 7, fermionic.
The commutation relations are [t,, t,} = fu.,°t. (summation over repeated indices). The

structure constants have the following property: f.,¢ % 0 = [a] + [b] + [c] = 0. They obey
the graded Jacobi identity

fap! fae® = foe faa® + (DN foc . (A7)
Note that the adjoint representation for superalgebras takes the form
ad(t,)j = —(= D' £, (A8)

The invariant metric g, is proportional to stry(7,7,), where the supertrace is taken in the
fundamental representation. Note that the Killing form, which is the supertrace in the adjoint
representation, can be degenerate (in fact null) for some superalgebras, e.g. gl(M|M) [20].
The invariant metric has the following properties:

gap = (—=D"Wg,and g, =0 if [a] # [b]. (A.9)

We introduce its inverse g”b and use it to raise and lower the indices. For instance,
¢ =gy, and [, = g" g% f.5" g,c; we therefore have [17, t°] = £ .
Defining the tensor fu,c = fus” 8y¢, One can take it totally (graded) antisymmetric,

fave = —(=DLf = —(—D)PAl £, . (A.10)

Appendix B. Deformations and cohomology

Let us consider a Lie superalgebra .4 with homogeneous generators u, and Lie bracket,

{ug, ug} = fup’uy. (B.1)

The gradation index [] is such that [o] = O if u, is bosonic and [«] = 1 if u, is fermionic.
We aim at constructing a deformation of the Lie bracket (B.1), following e.g. [16].
For such a purpose, we introduce n-cochains (n € Z-), i.e. linear maps X(") from A" to
A with the following property:

L+{o; [evis
X (Uerys ey Uy Uayyy s vy Uy ) = (=DMl OO 0 g ey - th,) . (B2)
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The Chevalley derivation 6 maps n-cochains to (n + 1)-cochains,

n

((SX(”)) (uaov Ugys ooy uan) = Z(_l)i+€i {ua;v X(n) (MOIU’ s ﬁai’ cee uan)}

i=0
+ Y DR (g, )ty Bl Bl U,) (B3)

0<i<j<n

where ¢; = [ai](2k<i [ak]) and €j =€ te€;+ [Ol,'][Olj].

It obeys 8> = 0, so that one can define n-cocycles, which are closed n-cochains
(8x™ = 0), and coboundaries, which are exact n-cochains (x™ = §x®~ ). As usual,
one considers closed cochains modulo exact ones to study the cohomology associated with §.

Here, we will be mainly concerned with the action of the Chevalley derivation on 2-
cochains,

Gx), v, w) = {u, x (0, w)} — (=DM o, ¥ @, w)} + (= HPEHED )y (u, v))
- X({us U}v U)) + (_1)[U][W]X({u’ w}v U) - (_1)[u]([U]+[W])X({U7 U)}, u)

We now consider a deformation of the enveloping algebra U/ (A),
(o, ugh = fap”uy +hen(ug, up) (B.4)

where ¢y, is a 2-cochain which may depend on positive powers of /1. Asking the bracket {-, -}5
to obey the graded Jacobi identity is equivalent to saying that ¢y is a 2-cocycle:

5(ph(uaauﬂauy):() (B'S)

We now prove a result that is used in the present paper.

Lemma B.1. Let gl(M|N), be the polynomial algebra based on gl(M|N), truncated at order

p, and u‘jb (j < panda,b = 1,...,M + N) the corresponding generators. Let ¢ be a
2-cocycle with values in U(gl(M|N) ). We introduce u? = Z;V[JrlN uf]f”

Ifgo(ugb,uj:d) and go(ul , ;d),‘v’a,b,c,d = 1,....,M+N andVj =0,...,p —1
are known, then ¢ is completely determined up to go(u(;, uf), j,k > 1, which is central in
UGLMIN)p).

Proof. We write the cocycle condition for a triplet (4", uf, ui®),

@ ({u®, ) ulf) + (=D EHDARIED g ({0 88} yed)
— (= )b ldIeRaD o (fyed 38} ) = (u?, g (ul?, u?))

J

_ (_1)([a]+[b])([C]+[d]) {uz‘d’ ) (u‘jb, uzg)}

_ (_1)([a]+[b])([C]+[d]+[€]+[g]) {u;g, ® (uab uzd)} . (B.6)
We write the commutation relations of g/(M|N), as
{M?b, uid} — abcu?:—lk _ (_1)([aHlbl)(ldﬂdl)éad”;‘ﬁ.k with u,alb -0 n> p Va, b.
(B.7)

Taking as a special case e = g = a # b and ¢ = 1, one obtains from (B.6)
o (i i) = {ul o (e ut) ) — o ({uf”s i} i)
+ (_1)([C]+[dl)([al+[bl) ((5da 5 (”k+1’ qb)
—{ui ¢ (i ui)} = {ui o (i ui)}) (B.8)
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Taking as a special case j = 1,k = 2, this last equation shows that one can compute
go(ugb’ u§ ) for a # b, as soon as one knows go(ul , jg) Ve, d, e, g,Vj. Then, in the same

way, j = 1 allows one to compute (p(u2 , ui‘il) as soon as one knows gz)(u2 , uid).

More generally, if one supposes by induction that go(u b uk 4),Vj" < j,Vk, and Ve, d,
Uiy, ug ), fora # b and Vk.
Thus, by induction, we have shown that one can compute go(ujfb ,ugd ), fora # b,Vj,

a # b, are known, (B.8) shows that one can compute go(

k, c,d, from the knowledge of ¢ (u ,ukg)
It remains to compute (p( o, uy ) For such a purpose, we start again with (B.6) now
witha=d#b=cande=g
) (I/l — ( 1)[a|+lb] J+ , ;e) — (8“6 _ abe) ((p (”?iz’ uza) + (_1)[a|+[b]¢ (uiip M?b))
+ {uj ,Q (uk”, u;;"f)} — (=1)leiol {uia’ 0 (uab s )}

— (=D o (i, u)} (B.9)

All the terms in the rhs of the above equation are known, so that one can compute®
P((=DWude — (=P, ug), Ya, b, e, Vj, k.

Thus, only (p( uj, k), where u(; = Zf;lN 44 remains to be computed. Once again, from
(B.6), taking @ = b and ¢ = d, and then summmg over a and d, one obtains
{ugf o (ul. u)} =0 (B.10)

which shows that (p(uo ug) is central in U (gI(M|N) ).
Thus, apart from the values (p( 0 LU, ‘« ) and the just mentioned central terms, we are able
to compute all the expressions go( ul’, uy ) This ends the proof. O
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